Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
527 = (53)9 = 1259 < 1289 = (27)9 = 263
263 = (29)7 = 5127 < 6257 = (54)7 = 528
A = 3 + 32 + ... + 3120
= 3(1+3) + 33(1+3) + ... + 3119(1+3)
= 4( 3+ 33 + ... + 3119) chia hết cho 2 (do 4 chia hết cho2)
Vậy ..............................
__________________JK ~ Liên Quân Group _______________________
ta có :
\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+..+\left(5^{19}+5^{20}\right)\)
\(=5.6+5^3.6+5^5.6+..+5^{19}.6\)
thế nên C chia hết cho 6
C= 5+5^2+5^3+...+5^20.
C=(5+5^2)+(5^3+5^4)...+(5^19+5^20)
C=30+(5^2.5+5^2.5^2)+...+(5^18.5+5^18.5^2)
C=30+5^2.30+...+5^18.30
Vì 30:6 ->30+5^2.30+...+5^18.30->C:6
Ta có:
\(C=5+5^2+5^3+...+5^{20}\)
\(=\left(5+5^2+5^3+5^4\right)+\left(5^{17}+5^{18}+5^{19}+5^{20}\right)\)
\(=5.\left(1+5+5^2+5^3\right)+...+5^1\rightarrow7\left(1+5+5^2+5^3\right)\)
\(=5.156+...+5^{17}.156\)
\(=156.\left(5+...+5^{17}\right)=13.12.\left(5+...+5^{17}\right)\)Chia hết cho 5,6,13
a) Ta có:
\( A = 5+5^2+5^3+\ldots+5^{100} \)
Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).
Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).
Do đó, A chia hết cho 5.
Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).
Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).
Do đó, A không chia hết cho 25.
b) Ta có:
\( B = 5+5^2+5^3+\ldots+5^{20} \)
Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).
Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).
Do đó, B chia hết cho 6.
c) Ta có:
\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)
Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).
Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).
Do đó, C không chia hết cho 6.
d) Ta có:
\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)
Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).
Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục
mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
ai tick cho mik đc 250 điểm hỏi đáp với . nếu các bạn tick mik thì gửi tin nhắn mik tick lại
25 = 22.23 < 22.32 = 62 = 22.32 < 32.32 < 35
Vậy 25 < 62 < 35 (đpcm)