\(\dfrac{10^{2021}+1}{10^{2020}+1}\) và D = \(\dfrac{10^{2022}+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=\dfrac{10^{2021}+10-9}{10^{2020}+1}=10-\dfrac{9}{10^{2020}+1}\)

\(D=\dfrac{10^{2022}+10-9}{10^{2021}+1}=10-\dfrac{9}{10^{2021}+1}\)

mà \(10^{2020}+1< 10^{2021}+1\)

nên \(-\dfrac{9}{10^{2020}+1}< -\dfrac{9}{10^{2021}+1}\)

hay C<D

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

23 tháng 3 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2019}+1}\)

=> \(\frac{A}{10}=\frac{10^{2020}+1}{10^{2020}+10}=\frac{10^{2020}+10-9}{10^{2020}+10}=1-\frac{9}{10^{2020}+10}\)

Lại có : B = \(\frac{10^{2021}+1}{10^{2020}+1}\)

=> \(\frac{B}{10}=\frac{10^{2021}+1}{10^{2021}+10}=\frac{10^{2021}+10-9}{10^{2021}+10}=1-\frac{9}{10^{2021}+10}\)

Vì : \(\frac{9}{10^{2021}+10}< \frac{9}{10^{2020}+10}\Rightarrow1-\frac{9}{10^{2021}+10}>1-\frac{9}{10^{2020}+10}\Rightarrow\frac{B}{10}>\frac{A}{10}\Rightarrow B>A\) 

Vậy B > A

1 tháng 4 2017

a, Ta có : \(10^{15}\cdot11=10^{15}\left(10+1\right)=10^{16}+10^{15}\)

\(10^{16}+10^{15}>10^{16}+10\)

\(\Rightarrow\dfrac{10^{16}+10^{15}}{10^{16}+1}>\dfrac{10^{16}+10}{10^{16}+1}\)

Hay A>B

b, Ta có : \(C=\dfrac{10^{10}+1}{10^{10}-1}=\dfrac{10^{10}}{10^{10}-1}+\dfrac{1}{10^{10}-1}\)

\(D=\dfrac{10^{10}-1}{10^{13}-3}=\dfrac{10^{10}}{10^{13}-3}+\dfrac{-1}{10^{13}-3}\)

\(\dfrac{10^{10}}{10^{10}-1}>\dfrac{10^{10}}{10^{13}-3};\dfrac{1}{10^{10}-1}>\dfrac{-1}{10^{13}-3}\)

\(\Rightarrow\dfrac{10^{10}+1}{10^{10}-1}>\dfrac{10^{10}-1}{10^{13}-3}\)

Hay C > D

13 tháng 3 2018

a,A<B

b,A,<B

c,A<B

13 tháng 3 2018

a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)

c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:

 \(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

Vậy A < B

18 tháng 7 2017

D= 1/2. (1/25-1/27 +1/27-1/29+...+1/73-1/75)

= 1/2. (1/25 -1/75)

=1/2 . 2/75= 1/75

18 tháng 7 2017

D = \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+...+\dfrac{1}{73.75}\)

2D = 2( \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+...+\dfrac{1}{73.75}\) )

= \(\dfrac{2}{25.27}+\dfrac{2}{27.29}+...+\dfrac{2}{73.75}\)

= \(\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)

= \(\dfrac{1}{25}-\dfrac{1}{75}\)

= \(\dfrac{2}{75}\)

20 tháng 3 2017

d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B

cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A

Suy ra B>A(chuc ban hoc goi nhe)

25 tháng 7 2017

\(n\left(n+3\right)=n^2+3n\)

\(\left(n+2\right)\left(n+1\right)=n^2+3n+2\)

\(n^2+3n< n^2+3n+2\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\left(n\in N\right)\)

b) \(\dfrac{n}{2n+1}=\dfrac{3n}{6n+3}< \dfrac{3n+1}{6n+3}\)

c) \(\dfrac{10^8+2}{10^8-1}=1+\dfrac{1}{10^8-1}\)

\(\dfrac{10^8}{10^8-3}=\left(1+\dfrac{3}{10^8-3}\right)\)

\(\dfrac{1}{10^8-1}>\dfrac{3}{10^8-3}\Rightarrow\dfrac{10^8+2}{10^8-1}< \dfrac{10^8}{10^8-3}\)

25 tháng 7 2017

Làm dần dần và làm từ từ, suy ra được nhiều cách giải.

a) \(\dfrac{n}{n+1}\)\(\dfrac{n+2}{n+3}\)

+ Cách 1:

\(\dfrac{n}{n+1}=\dfrac{n+1-1}{n+1}=1-\dfrac{1}{n+1}\)

\(\dfrac{n+2}{n+3}=\dfrac{n+3-1}{n+3}=1-\dfrac{1}{n+3}\)

\(\dfrac{1}{n+1}>\dfrac{1}{n+3}\) nên \(1-\dfrac{n}{n+1}< 1-\dfrac{1}{n+3}\)

\(\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)

+ Cách 2:

Ta so sánh: \(n\left(n+3\right)\)\(\left(n+1\right)\left(n+2\right)\)

\(n\left(n+3\right)=nn+3n=n^2+3n\)

\(\left(n+1\right)\left(n+2\right)=\left(n+1\right)n+\left(n+1\right).2=n^2+n+2n+2=n^2+3n+2\)

\(n^2+3n< n^2+3n+2\) nên \(\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)

b) \(\dfrac{n}{2n+1}\)\(\dfrac{3n+1}{6n+3}\)

Ta so sánh: \(n\left(6n+3\right)\)\(\left(2n+1\right)\left(3n+1\right)\)

\(n\left(6n+3\right)=n.6n+3n=6n^2+3n\)

\(\left(2n+1\right)\left(3n+1\right)=\left(2n+1\right)3n+\left(2n+1\right)=6n^2+3n+2n+1=6n^2+5n+1\)

\(6n^2+3n< 6n^2+5n+1\) nên \(\dfrac{n}{2n+1}< \dfrac{3n+1}{6n+3}\)

c) \(\dfrac{10^8+2}{10^8-1}\)\(\dfrac{10^8}{10^8-3}\)

\(\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)

\(\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)

\(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\) nên \(\dfrac{10^8+2}{10^8-1}>\dfrac{10^8}{10^8-3}\)

d) \(\dfrac{3^{17}+1}{3^{20}+1}\)\(\dfrac{3^{20}+1}{3^{23}+1}\)

(đang tìm cách làm, và thêm vài cách khác)

b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)

\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)

mà \(10^7-8< 10^8-7\)

nên A>B

c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)

\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)

mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)

nên A<B