\(\le\)3x : 3\(\le\)81

d)5x ....">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

Bg

c) 9 < 3x : 3 < 81

=> 32 < 3x - 1 < 34 

=> x - 1 = {2; 3; 4}

=> x = {3; 4; 5}

d) 5x . 5x + 1 . 5 x + 2 < 218 . 518 : 218 

=> 5x + x + 1 + x + 2 < 218 : 218 . 518 

=> 53x + 3 < 1.518 

=> 53.(x + 1) < 518 

=> 3.(x + 1) < 18

=> x + 1 < 18 : 3

=> x + 1 < 6

=> x < 6 - 1

=> x < 5

5 tháng 8 2020

c. \(9\le3^x:3\le81\)

\(\Rightarrow3^2\le3^{x-1}\le3^4\)

\(\Rightarrow3^{x-1}\in\left\{3^2;3^3;3^4\right\}\)

\(\Rightarrow x-1\in\left\{2;3;4\right\}\)

\(\Rightarrow x\in\left\{3;4;5\right\}\)

d. Thêm đk : x thuộc N

 \(5^x.5^{x+1}.5^{x+2}\le2^{18}.5^{18}:2^{18}\)

\(\Rightarrow5^{x+x+1+x+2}\le5^{18}\)

\(\Rightarrow x+x+x+1+2\le18\)

\(\Rightarrow3x+3\le18\)

\(\Rightarrow3\left(x+1\right)\le18\)

\(\Rightarrow x+1\le6\)

\(\Rightarrow x\le5\)

\(\Rightarrow x\in\left\{1;2;3;4;5\right\}\)

29 tháng 8 2018

2x = 32

=> 2x = 25

=> x = 5

vậy_

29 tháng 8 2018

a) \(2^x=32\)

Ta có: \(2^5=32\)

\(\Rightarrow2^x=2^5\)

\(\Rightarrow x=5\)

b) Sửa đề tí: \(9< 3^x< 81\)

\(\Rightarrow3^2< 3^x< 3^4\)

\(\Rightarrow2< x< 4\)

\(\Rightarrow x=\left\{3\right\}\)

Vậy x = 3

c) Ta có: \(25\le5^x\le125\)

\(\Rightarrow5^2\le5^x\le5^3\)

\(\Rightarrow2\le x\le3\)

\(\Rightarrow x=\left\{2;3\right\}\)

Vậy x = 2 hoặc x = 3

d) \(\left(x-2\right)^3\times5=40\)

\(\Rightarrow\left(x-2\right)^3=8\)

Mà \(8=2^3\Rightarrow\left(x-2\right)^3=2^3\)

Suy ra: x - 2 = 2

Vậy x = 4

28 tháng 5 2015

Ta có \(5^{3x+3}\le10^{18}\div2^{18}\Rightarrow5^{3x+3}\le5^{18}\)

   \(\Rightarrow3x+3\le18\) ; \(x\le5\)

\(\Rightarrow x\in\left\{0;1;2;3;4;5\right\}\)

3 tháng 10 2018

\(x^{2018}-x^{18}=0\)

\(x^{18}.\left(x^{2018}-1\right)=0\)

\(=>\orbr{\begin{cases}x^{18}=0\\x^{2018}-1=0\end{cases}}\)

\(=>\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

3 tháng 10 2018

b) 275 > 81x

<=> 315 > 34x

<=> 15 > 4x

<=> x < 15 /4 

c) 1252+x > 258

<=> 53(2+x) > 516

<=> 3(2+x) > 16

<=> 6 + 3x > 16

<=> 3x > 10

<=> x > 10/3

d) 5x . 5x+1 . 5x+2 <= 100...0 ( 18 số 0 ) : 218

<=> 5x+x+1+x+2 <= 1018 : 218

<=> 53x+3 <= 518

<=> 3x+3 <= 18

<=> 3x <= 15

<=> x <= 5 

( <= là bé hơn hoặc bằng )

17 tháng 10 2016

a) \(3^{x+1}.15=135\)

\(\Rightarrow3^{x+1}=9\)

\(\Rightarrow3^{x+1}=3^2\)

\(\Rightarrow x+1=2\)

\(\Rightarrow x=1\)

Vậy \(x=1\)

17 tháng 10 2016

b) \(x+2x+2^2x+....+2^{2016}x=2^{2017}-1\\ \Rightarrow x\left(2+2^2+...+2^{2016}\right)=2^{2017}-1\\ \Rightarrow x\left(2^{2017}-2\right)=2^{2017}-1\)

c) \(x\left(x-1\right)+\left(x-1\right)^2=0\\ \Rightarrow x\left(x-1\right)+\left(x-1\right)\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+\left(x-1\right)\right)=0\\ \Rightarrow\left(x-1\right)\left(2x-1\right)=0\\ \Rightarrow\begin{cases}x-1=0\\2x-1=0\end{cases}\)

d) \(2^2.2^5\le2^{x-5}\le2^{10}\\ \Rightarrow2^7\le2^{x-5}\le2^{10}\)

 

a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)

\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)

=>x=10

b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)

\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)

hay \(x\in\left\{0;1;2\right\}\)

c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)

\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)

\(\Leftrightarrow6-x=0\)

hay x=6

2 tháng 10 2018

 x đâu bạn

15 tháng 7 2018

\(3^x.3^3=81\)

<=> \(3^x=3\)

<=> \(x=1\)

2 tháng 1 2017

1. a) Ta có:

\(A=333^{444}=\left(333^4\right)^{111}\)

\(B=444^{333}=\left(444^3\right)^{111}\)

A và B đã cùng số mũ là \(111\) . Bây giờ ta so sánh \(333^4\)\(444^3\)

\(333^4=\left(3.111\right)^4=3^4.111^4=81.111^4\)

\(444^3=\left(4.111\right)^3=4^3.111^3=64.111^3\)

Ta thấy : \(84.111^4>64.111^3\)

=> \(333^4>444^3\)

2 tháng 1 2017

1. b) Ta có:

\(3^{24680}=\left(3^2\right)^{12340}\)

\(2^{37032}=\left(2^3\right)^{12340}\)

\(3^2=9\)

\(2^3=8\)

\(9>8\) hay \(\left(3^2\right)^{12340}>\left(2^3\right)^{12340}\)

=> \(3^{24680}>2^{37020}\)