K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2015

Bạn tự hỏi rồi từ trả lời ! Bạn xem đầu bạn có nóng không ?

9 tháng 10 2015

olm ko cho tự hỏi tự trả lời đâu nhoa.

1) tính nhanh giá trị biểu thức:a) x^2 + 4y^2 - 4xy tại x=18; y=4b) (2x + 1)^2 + (2x - 1)^2 - 2 (1 + 2x) (1 - 2x) tại x = 100 2) tìm x biết : a) 7x^2 -28 =0                    b) 2/3x (x^2 - 4) = 0                               c) 2x (3x - 5) - (5 - 3x) = 0                                                           d) (2x - 1)^2 -25 = 0 3) phân tích các đa thức sau thành nhân tử :a) 2(x - 3) - y (x - 3)        b) x^3 + 3x^2 - 3x - 1        c) x^2 + 5xy         d) x^2 - x - y^2...
Đọc tiếp

1) tính nhanh giá trị biểu thức:

a) x^2 + 4y^2 - 4xy tại x=18; y=4

b) (2x + 1)^2 + (2x - 1)^2 - 2 (1 + 2x) (1 - 2x) tại x = 100

 

2) tìm x biết : 

a) 7x^2 -28 =0                    b) 2/3x (x^2 - 4) = 0                               c) 2x (3x - 5) - (5 - 3x) = 0

                                                           d) (2x - 1)^2 -25 = 0

 

3) phân tích các đa thức sau thành nhân tử :

a) 2(x - 3) - y (x - 3)        b) x^3 + 3x^2 - 3x - 1        c) x^2 + 5xy         d) x^2 - x - y^2 -y

e) x^2 - 9y^2 +2x +1        f) x^2 - 2x - 4y^2 - 4y       g) 10x +15y          h) x^2 - 2xy + y^2 - 4

i) 4x - 4y + x^2 - 2xy + y^2               k) x^4 - 4x^3 - 8x^2 - 8x                  l) x^3 + x^2 - 4x - 4

n) x^3 + x^2y - xy^2 - y^3                o) x^2 - y^2 - 2x - 2y                        p) x^2 - y^2 - 2x + 2y

q) 2x + 2y - x^2 - xy                         r) x^2 - 25 + y^2 + 2xy                     s) x^3 - 2x^2 + x

t) 12x^2y - 18xy^2 - 30y^2                u) 36 - 12x + x^2                              v) 3x^2 - 3xy

1

Bài 2: 

a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

1 tháng 3 2020

1. \(\Leftrightarrow\left(x-6\right)\left(x+7\right)+5\left(x-6\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left[\left(x+7\right)+5\left(3x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-6\right)\left(16x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\16x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-\frac{1}{8}\end{matrix}\right.\)

1 tháng 3 2020

4. \(\Leftrightarrow\left(x+5\right)^2\left(3x+2\right)^2-x^2\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2\left[\left(3x+2\right)^2-x^2\right]=0\)

\(\Leftrightarrow\left(x+5\right)^2\left(2x+2\right)\left(4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\2x+2=0\\4x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x=-2\\4x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)

24 tháng 7 2017

2/ 5x ( 12x + 7 ) - ( 3x + 1 ) ( 20x - 5 ) = -100

\(\Leftrightarrow\) 60x2 + 35x - 60x2 + 15x - 20x + 5 = -100

\(\Leftrightarrow\) 30x = -100 - 5

\(\Leftrightarrow\) x = - 3,5

24 tháng 7 2017

4/ ( x + 5 ) 2 + ( x + 4 ) ( x - 4 ) = 0

\(\Leftrightarrow\) x2 + 10x + 25 + x2 - 4 = 0

\(\Leftrightarrow\) 2x2 + 10x + 21 = 0

---> Phương trình vô nghiệm

Sửa đề bài : 4/ ( x + 5 ) 2 - ( x + 4 ) ( x - 4 ) = 0

\(\Leftrightarrow\) x2 + 10x + 25 - x2 + 4 = 0

\(\Leftrightarrow\) 10x = - 29

\(\Leftrightarrow\) x = \(-\dfrac{29}{10}\)

Vậy phương trình có nghiệm.......

21 tháng 12 2021

a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

31 tháng 8 2020

Giúp mik vs ạ.Mik đag cần

AH
Akai Haruma
Giáo viên
21 tháng 2 2019

1.

\((2x+1)(x^2+2)=0\Rightarrow \left[\begin{matrix} 2x+1=0\\ x^2+2=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{2}\\ x^2=-2< 0(\text{vô lý})\end{matrix}\right.\)

Vậy \(x=-\frac{1}{2}\)

2.\((x^2+4)(7x-3)=0\Rightarrow \left[\begin{matrix} x^2+4=0\\ 7x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-4< 0(\text{vô lý})\\ x=\frac{3}{7}\end{matrix}\right.\)

Vậy \(x=\frac{3}{7}\)

3.

\((x-5)(3-2x)(3x+4)=0\)

\(\Rightarrow \left[\begin{matrix} x-5=0\\ 3-2x=0\\ 3x+4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=\frac{3}{2}\\ x=-\frac{4}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
21 tháng 2 2019

4.

\((x-2)(3x+5)=(2x-4)(x+1)\)

\(\Leftrightarrow (x-2)(3x+5)-(2x-4)(x+1)=0\)

\(\Leftrightarrow (x-2)(3x+5)-2(x-2)(x+1)=0\)

\(\Leftrightarrow (x-2)[(3x+5)-2(x+1)]=0\)

\(\Leftrightarrow (x-2)(x+3)=0\Rightarrow \left[\begin{matrix} x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

5.

\((2x+5)(x-4)=(x-5)(4-x)\)

\(\Leftrightarrow (2x+5)(x-4)-(x-5)(4-x)=0\)

\(\Leftrightarrow (2x+5)(x-4)+(x-5)(x-4)=0\)

\(\Leftrightarrow (x-4)[(2x+5)+(x-5)]=0\)

\(\Leftrightarrow (x-4).3x=0\)

\(\Rightarrow \left[\begin{matrix} x-4=0\\ 3x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=4\\ x=0\end{matrix}\right.\)

a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)

=>(x+5)(x-3)+8=x^2-1

=>x^2+2x-15+8=x^2-1

=>2x-7=-1

=>x=3(loại)

b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)

=>(x-4)(x+1)+x^2+3+5(x-1)=0

=>x^2-3x-4+x^2+3+5x-5=0

=>2x^2+2x-6=0

=>x^2+x-3=0

=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)

e: =>x^2-2x+1+2x+2=5x+5

=>x^2+3=5x+5

=>x^2-5x-2=0

=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)

g: (x-3)(x+4)*x=0

=>x=0 hoặc x-3=0 hoặc x+4=0

=>x=0;x=3;x=-4

15 tháng 8 2018

\(1,\left(x-4\right)^2-36=0\)

\(\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\)

\(\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

\(2,x^2-25-\left(x+5\right)^2\)

\(=\left(x-5\right)\left(x+5\right)-\left(x+5\right)^2\)

\(=\left(x+5\right)\left(x-5-x-5\right)\)

\(=-10\left(x+5\right)\)

\(3,\left(2x-3\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

\(5,\left(x+8\right)^2=191\)

\(\Leftrightarrow\left(x+8\right)^2-191=0\)

\(\Leftrightarrow\left(x+8-\sqrt{191}\right)\left(x+8+\sqrt{191}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{191}-8\\x=-\sqrt{191}-8\end{matrix}\right.\)

\(6,x^2+4-\left(x-2\right)^2=0\)

\(\Leftrightarrow x^2+4-x^2+4x-4=0\)

\(\Leftrightarrow4x=0\Leftrightarrow x=0\)