Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)
\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)
\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)
\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)
\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm
sử dụng ct tổng quát (1+x)n thay n=10 và x=2 ta có
(1+2)10=310
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+C_n^3x^3+...+C_n^nx^n\)
Đạo hàm 2 vế:
\(n\left(1+x\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)
Thay \(x=1\) và \(n=2017\) vào ta được:
\(2017.2^{2016}=C_{2017^1}+2C_{2017}^2+3C_{2017}^3+...+2017.C_{2017}^{2017}\)
\(\left\{{}\begin{matrix}C_{2020}^k\ge C_{2020}^{k-1}\\C_{2020}^k\ge C_{2020}^{k+1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2020!}{k!\left(2020-k\right)!}\ge\frac{2020!}{\left(k-1\right)!\left(2020-k+1\right)!}\\\frac{2020!}{k!\left(2020-k\right)!}\ge\frac{2020!}{\left(k+1\right)!\left(2020-k-1\right)!}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2020-k+1\ge k\\k+1\ge2020-k\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k\le\frac{2021}{2}\\k\ge\frac{2019}{2}\end{matrix}\right.\) \(\Rightarrow k=1010\)
Ta có :
\(C^{k+1}_{n+1}=C^k_n+C_n^{k+1}\)
\(C^{k+1}_n=C^k_{n-1}+C_{n-1}^{k+1}\)
...........
\(C^{k+1}_{k+2}=C^k_{k+1}+C_{k+1}^{k+1}\)
Từ đó :
\(C^{k+1}_{n+1}=C^k_n+C_{n-1}^k+....C^k_{k+1}+C^{k+1}_{k+1}\)
= \(C^k_n+C_{n-1}^k+....+C^k_{k+1}+C^k_k\)
a) Chọn 4 trong 50 bạn để quét sân, sau đó chọn 5 trong 46 bạn còn lại để xén cây. Vậy có \(C^4_{50}.C^4_{46}\) cách phân công.
Từ đó ta có đẳng thức cần chứng minh
b) Lập luận tương tự
c) Ta có : \(0!=1;2!=2;4!=1.2.3.4=24\)
Các số hạng \(6!;8!;.....,100!\) đều có tận cùng là chữ số \(0\). Do đó chữ số ở hàng đơn vị của \(S\) là \(1+2+4=7\)
\(C_{14}^k+C_{14}^{k+2}=2C_{14}^{k+1}\)
\(\Leftrightarrow\dfrac{14!}{\left(14-k\right)!k!}+\dfrac{14!}{\left(12-k\right)!\left(k+2\right)!}=\dfrac{2.14!}{\left(13-k\right)!\left(k+1\right)!}\)
\(\Leftrightarrow\dfrac{14!}{k!\left(12-k\right)!}\left[\dfrac{1}{\left(14-k\right)\left(13-k\right)}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}\right]=\dfrac{2}{\left(13-k\right)\left(k+1\right)}.\dfrac{14!}{k!\left(12-k\right)!}\)
\(\Leftrightarrow\dfrac{2k^2-24k+184}{\left(14-k\right)\left(k+2\right)\left(13-k\right)\left(k+1\right)}=\dfrac{2}{\left(13-k\right)\left(k+1\right)}\)
\(\Leftrightarrow\dfrac{k^2-12k+92}{-k^2+12k+28}=1\)
\(\Leftrightarrow k^2-12k+92=-k^2+12k+28\)
\(\Leftrightarrow k^2-12k+32=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=4\\k=8\end{matrix}\right.\)
đề bảo là cm hay tìm k