Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3x-\dfrac{2}{5}=0=>3x=\dfrac{2}{5}=>x=\dfrac{2}{15}\)
b)\(\left(x-3\right)\left(2x+8\right)=0=>\left[{}\begin{matrix}x-3=0\\2x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
c)\(3x^2-x-4=0=>3x^2+3x-4x-4=0=>\left(3x-4\right)\left(x+1\right)=0\)
\(=>\left[{}\begin{matrix}3x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-1\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{18}{9}=2\)
Do đó: x=8; y=10
\(\dfrac{1}{2}-\dfrac{5}{12}x=\dfrac{2}{3}\)
\(\dfrac{5}{12}x=\dfrac{1}{2}-\dfrac{2}{3}=\dfrac{3}{6}-\dfrac{4}{6}\)
\(\dfrac{5}{12}x=\dfrac{-1}{6}\)
\(x=\dfrac{-1}{6}:\dfrac{5}{12}=\dfrac{-1}{6}.\dfrac{12}{5}\)
\(x=\dfrac{-2}{5}\)
\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
<=> \(\frac{x-2}{7}.\frac{x+3}{5}.\frac{x+4}{3}=0\)
<=> \(\frac{x-2}{7}=0\)hoặc \(\frac{x+3}{5}=0\); \(\frac{x+4}{3}=0\)
Nếu \(\frac{x-2}{7}=0\)<=> \(x-2=0\)<=> \(x=2\)
Nếu \(\frac{x+3}{5}=0\)<=> \(x+3=0\) <=> \(x=3\)
Nếu \(\frac{x+4}{3}=0\)<=> \(x+4=0\)<=> \(x=4\)
Vây x= 2 hoặc 3; 4
\(x\left(x-\frac{1}{3}\right)< 0\)
Để \(x\left(x-\frac{1}{3}\right)< 0\)thì x và \(x-\frac{1}{3}\)trái dấu nhau
Thấy \(x>x-\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}x>0\\x-\frac{1}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{3}\end{cases}\Leftrightarrow}0< x< \frac{1}{3}}\)
a: a+c=b-8
=>a+c-b=-8
G(-1)=a-b+c=-8
b: G(0)=4; G(1)=9; G(2)=14
=>0+0+c=4 và a+b+c=9 và 4a+2b+c=14
=>c=4 và a+b=5 và 4a+2b=10
=>a=0 và b=5 và c=4
a, \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b, \(\left(2x-4\right)\left(9-3x\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}2x-4>0\\9-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}\Leftrightarrow2< x< 3}}\)
a. \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b. \(\left(2x-4\right)\left(9-3x\right)>0\Leftrightarrow18x-6x-36+12x>0\Leftrightarrow24x>36\Leftrightarrow x>\frac{3}{2}\)
c. \(\frac{2}{3}x-\frac{3}{4}>0\Leftrightarrow\frac{2}{3}x>\frac{3}{4}\Leftrightarrow x>\frac{9}{8}\)
d. \(\left(\frac{3}{4}-2x\right)\left(\frac{-3}{5}+\frac{2}{-61}-\frac{17}{51}\right)\le0\)
\(\Leftrightarrow\frac{3}{4}-2x\le0\Leftrightarrow2x\le\frac{3}{4}\Leftrightarrow x\le\frac{3}{8}\)
e. \(\left(\frac{3}{2}x-4\right).\frac{5}{3}>\frac{15}{6}\Leftrightarrow\frac{3}{2}x-4>\frac{3}{2}\Leftrightarrow\frac{3}{2}x>\frac{11}{2}\Leftrightarrow x>\frac{11}{3}\)
\(x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy \(x=-1\)hoặc \(x=0\)
\(x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
TH1: \(\dfrac{1}{4}-x=0\Rightarrow x=\dfrac{1}{4}\)
TH2: \(x+\dfrac{2}{5}=0\Rightarrow x=-\dfrac{2}{5}\)
Vậy \(x\in\left\{\dfrac{1}{4};-\dfrac{2}{5}\right\}\)
c) Trường hợp 1:
\(\dfrac{1}{4}-x=0\)
\(x=\dfrac{1}{4}-0\)
\(x=\dfrac{1}{4}\)
TH2:
\(x+\dfrac{2}{5}=0\)
\(x=0\)
Vậy x = 0; 0