Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1-\(\dfrac{1}{2^2}\)-\(\dfrac{1}{3^2}\)-...-\(\dfrac{1}{2022^2}\) Chứng minh A>\(\dfrac{1}{2022}\)
A=1-(1/2^2+1/3^2+...+1/2022^2)
1/2^2+1/3^2+...+1/2022^2<1/1*2+1/2*3+...+1/2021*2022=1-1/2022=2021/2022
=>-(1/2^2+...+1/2022^2)>-2021/2022
=>A>1/2022
A=
+ +...+ +
⇔2A= + + +...+ +
⇔2A-A=( + + +...+ +) - (
+ + +...+ +)
⇔A= -
Vậy A-1=22023
\(B=2021\cdot1\cdot2\cdot3\cdot...\cdot2022\cdot\left(1+\dfrac{1}{2}+...+\dfrac{1}{2022}\right)⋮2021\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
A<1/1*2+1/2*3+...+1/2021*2022
=>A<1-1/2+1/2-1/3+...+1/2021-1/2022<1
Lời giải:
Đặt $A=1-2+2^2-2^3+2^4-2^5+2^6-....-2^{2021}+2^{2022}$
$A=1+(-2+2^2-2^3)+(2^4-2^5+2^6)+(-2^7+2^8-2^9)+...+(2^{2020}-2^{2021}+2^{2022})$
$A=1+(-2+2^2-2^3)+2^3(2-2^2+2^3)+2^6(-2+2^2-2^3)+....+2^{2019}(2-2^2+2^3)$
$=1+(-6)+2^3.6+2^6(-6)+....+2^{2019}.6$
$=1+6(-1+2^3-2^6+...+2^{2019})$
Suy ra $A$ chia $6$ dư $1$/
4A=1-1/2^2+1/2^4-...+1/2^2018-1/2^2020
=>5A=1-1/2^2022
=>A=1/5-1/5*2^2022<1/5=0,2
\(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2022}}\)
\(2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2021}}\)
\(2C-C=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2021}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2022}}\right)\)
\(C=1-\frac{1}{2^{2022}}< 1\).