Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tinh nhanh 1/1x4 + 1/4x7 +1/7x10 +...+ 1/91x94
Ta có :
1/1.4+1/4.7+...+1/91.94
=1/3.(1/1-1/4+...+1/91-1/94)
=1/3.(1/1-1/94)
=1/3.93/94
=31/94
1/1.4+1/4.7+1/7.10+...+1/91.94
=1/3.(3/1.4+3/4.7+3/7.10+...+3/91.94)
=1/3.(1-1/4+1/4-1/7+1/7-1/10+...+1/91-1/94)
=1/3.(1-1-94)
=1/3.(93/94)
=31/94
Đặt A= 1/1*4+1/4*7+1/7*10+....+1/91*94
3A= 3/1*4+3/4*7+3/7*10+....+3/91*94
3A=1/1-1/4+1/4-1/7+1/7-1/10+............+1/91-1/94
3A=1-1/94=93/94=>A=93/94*1/3=31/94
=31/94 k mình nha bạn
\(A=\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+...+\dfrac{1}{37\times40}\\ =\dfrac{1}{3}\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+...+\dfrac{3}{37\times40}\right)\\ =\dfrac{1}{3}\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\\ =\dfrac{1}{3}\times\left(1-\dfrac{1}{40}\right)\\ =\dfrac{1}{3}\times\dfrac{39}{40}\\ =\dfrac{13}{40}\)
1/1*4 + 1/4*7 + 1/7*10 + ... + 1/97*100
= 1/3(3/1*4 + 3/4*7 + 3/7*10 + ... + 3/97*100)
= 1/3(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100)
= 1/3(1 - 1/100)
= 1/3*99/100
= 33/100
\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)
\(=\frac{11}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{11}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{11}{3}\left(1-\frac{1}{103}\right)\)
Tự tính
\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)
= \(\frac{11}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
= \(\frac{11}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
= \(\frac{11}{3}.\left(1-\frac{1}{103}\right)\)
= \(\frac{11}{3}.\frac{102}{103}\)
= \(\frac{374}{103}\)
\(=\frac{1}{3}x\left(\frac{3}{1x4}+\frac{3}{4x7}+...+\frac{3}{77x80}\right)\)
\(=\frac{1}{3}x\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}x\left(\frac{1}{1}-\frac{1}{80}\right)\)
\(=\frac{1}{3}\times\frac{79.}{80}\)
\(=\frac{79}{240}\)
Tk giúp mk nha cảm ơn !!
A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)
A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)
A = \(\dfrac{105}{106}\)
B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)
B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)
C= \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))
C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)
C = \(\dfrac{5}{51}\)
D = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)
D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+ \(\dfrac{1}{8.9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)
D = \(\dfrac{8}{9}\)
E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)+ \(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))
E = \(\dfrac{3}{2}\)\(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)
E = \(\dfrac{147}{200}\)
a)Quy luật : \(\frac{1}{\left[\left(n-1\right)\cdot3+1\right]\left(3n+1\right)}\) ( n là vị trí của dãy phân số trên )
Phân số thứ 30 là : \(\frac{1}{\left[\left(30-1\right)\cdot3+1\right]\left(3\cdot30+1\right)}=\frac{1}{8008}\)
b) Ta có tổng sau : \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{88\cdot91}\)
\(3A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{88\cdot91}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{88}-\frac{1}{91}\)
\(3A=1-\frac{1}{91}=\frac{90}{91}\)
\(A=\frac{90}{91}\div3=\frac{30}{91}\)
Vậy tổng của 30 phân số đầu tiên trong dãy trên là \(\frac{30}{91}\)
làm đúng mà dis hoài
bực ơi là bực
ai dis hả khai mau tui dis lại ko chừa 1 phát nào
S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103
S=1/1-1/103
S=102/103
Vì 102/103<1 nên S<1
\(=\dfrac{2}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{31\cdot34}\right)\)
\(=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{33}{34}=\dfrac{11}{17}\)
\(C=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}.\)
\(3C=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
\(3C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(3C=1-\frac{1}{100}\)
\(3C=\frac{99}{100}\)
\(C=\frac{33}{100}\)