Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)
Biến đổi mẫu
\(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)
\(=\left(2017+1\right)+\left(\frac{2016}{2}+1\right)+...+\left(\frac{1}{2017}+1\right)-2017\)
\(=2018+\frac{2018}{2}+...+\frac{2018}{2017}+\frac{2018}{2018}-2018\)
\(=2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}=\frac{1}{2018}\)
Bài làm:
Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)
=> \(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\right)\)
<=> \(2B=1-\frac{1}{3^{2017}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{2017}.2}< \frac{1}{2}\)
=> \(B< \frac{1}{2}\)
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+...+x\right)\)
\(=1+\frac{1}{2}\cdot\frac{2\cdot3}{2}+\frac{1}{3}\cdot\frac{3\cdot4}{2}+\frac{1}{4}+\frac{4\cdot5}{2}+...+\frac{1}{x}\cdot\frac{x\left(x+1\right)}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{x+1}{2}\)
\(=\frac{1}{2}\left(2+3+4+...+x+1\right)\)
\(=\frac{1}{2}\cdot\frac{\left(x+1+2\right)\left(x+1-2+1\right)}{2}\)
\(=\frac{1}{2}\cdot\frac{x\left(x+3\right)}{2}=\frac{x\left(x+3\right)}{4}\).
sao phần b k có qui luật j vậy đúng ra nó phải là 3/2014+2/2015+2/2016 chứ ( 3 phân số cuối)
\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}=\left(\frac{2015+2}{2}\right)+\left(\frac{2014+3}{3}\right)+.....\left(\frac{1+2016}{2016}\right)+\frac{2017}{2017}=\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2017}=2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2017}\right)\Rightarrow\frac{B}{A}=2017\)
\(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+..+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)
\(C=1+\frac{1}{2}.\left(1+2\right).2:2+\frac{1}{3}.\left(1+3\right).3:2+\frac{1}{4}.\left(1+4\right).4:2+...+\frac{1}{2016}.\left(1+2016\right).2016:2\)
\(C=1+3:2+4:2+5:2+...+2017:2\)
\(C=2.\frac{1}{2}+3.\frac{1}{2}+4.\frac{1}{2}+5.\frac{1}{2}+...+2017.\frac{1}{2}\)
\(C=\frac{1}{2}.\left(2+3+4+5+...+2017\right)\)
\(C=\frac{1}{2}.\left(2+2017\right).2016:2\)
\(C=\frac{1}{2}.2019.2016.\frac{1}{2}\)
\(C=2019.504=1017576\)
\(C=\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right)...\left(1-\dfrac{1}{1+2+3+...+2016}\right)\)
\(=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{\dfrac{\left(2016+1\right).2016}{2}}\right)\)
\(=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{2033136}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}...\dfrac{2033135}{2033136}\)
\(=\dfrac{4}{6}.\dfrac{10}{12}...\dfrac{4066270}{4066272}\)
\(=\left(\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}\right).\left(\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{2018}{2017}\right)\)
\(=\dfrac{1}{2016}.\dfrac{2018}{3}=\dfrac{1009}{3024}\)
cảm ơn cậu