Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3}{\sqrt{x}+3}\)
ĐKXĐ:
a/ \(x-2020>0\Rightarrow x>2020\)
b/ \(x\ne0\)
c/ \(3x+5< 0\Rightarrow x< -\frac{5}{3}\)
d/ \(\frac{x-3}{1-x}\ge0\Rightarrow1< x\le3\)
Bài 2: ĐKXĐ tự tìm
a/ \(2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(\Leftrightarrow13\sqrt{2x}=28\Rightarrow\sqrt{2x}=\frac{28}{13}\)
\(\Rightarrow x=\frac{392}{169}\)
b/ \(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\Rightarrow x=9\)
c/ \(3\sqrt{2x+1}>15\Rightarrow\sqrt{2x+1}>5\)
\(\Rightarrow2x+1>25\Rightarrow x>12\)
d/ \(\sqrt{x}+1>12\Rightarrow\sqrt{x}>11\Rightarrow x>121\)
Với x >= 0 ; x khác 9
\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\frac{-3\sqrt{x}-3}{x-9}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}\)
\(\frac{B}{A}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}:\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{-3}{\sqrt{x}+3}+\frac{1}{2}< 0\)
\(\Leftrightarrow\frac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)
Kết hợp đk vậy 0 =< x < 9
ai thấy giúp toi với