Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(100\right)\Leftrightarrow x=100\)
\(\Rightarrow x+1=101\left(1\right)\)
Thay (1) vào ta được
\(f\left(100\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+...+\left(x+1\right)x^2-\left(x+1\right)x+25\)
\(f\left(100\right)=x^8-x^8-x^7+x^7+x^6-x^6-x^5+...+x^2-x^2-x+25\)
\(f\left(100\right)=-x+25\)
\(f\left(100\right)=-100+25\)
\(f\left(100\right)=-75\)
a, f(x)=( x - 100 )( x5 - x4 + x3 - x2 + x ) - x + 25
=>f(100) = - 75
x3 - 100x2 - 101x + 1 tại x = 101
\(x^3-\left(101x-100x^2+1\right)x=101\)
\(x^2-\left(-9899x^2+1\right)x=101\)
\(x^2--9898x=101\)
\(x=101^2+9898\)
\(x=303\)
\(x^3-100x^2-101x+1\)
\(=x^3-101x^2+x^2-101x+1\)
\(=x^2\left(x-101\right)+x\left(x-101\right)+1\)
\(=101^2\left(101-101\right)+101\left(101-101\right)+1\)
\(=1\)
c)\(4x^4-101x^2+25=0\)
\(\Leftrightarrow4x^4-100x^2-x^2+25=0\)
\(\Leftrightarrow4x^2\left(x^2-25\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+1=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\\x=5\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{2};\frac{-1}{2};5;-5\right\}\)
a)\(\left(2x-1\right)^2=x+5\)
\(\Leftrightarrow4x^2-4x+1=x+5\)
\(\Leftrightarrow4x^2-5x-4=0\)
\(\Leftrightarrow4\left(x^2-\frac{5}{4}x-1\right)=0\)
\(\Leftrightarrow4\left(x^2-\frac{5}{4}x+\frac{25}{64}-\frac{89}{64}\right)=0\)
\(\Leftrightarrow4\left[\left(x-\frac{5}{8}\right)^2-\frac{89}{64}\right]=0\)
\(\Leftrightarrow4\left(x-\frac{5}{8}+\frac{\sqrt{89}}{8}\right)\left(x-\frac{5}{8}-\frac{\sqrt{89}}{8}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{8}+\frac{\sqrt{89}}{8}=0\\x-\frac{5}{8}-\frac{\sqrt{89}}{8}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5-\sqrt{89}}{8}\\x=\frac{5+\sqrt{89}}{8}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5-\sqrt{89}}{8};\frac{5+\sqrt{89}}{8}\right\}\)
Ta có x = 100
=> x + 1 = 101
Khi đó A = x15 - 101x14 + 101x13 - 101x12 + ... + 101x3 - 101x2 + 101x + 2020
= x15 - (x + 1)x14 + (x + 1)x13 - (x + 1)x12 + ... + (x + 1)x3 - (x + 1)x2 + (x + 1)x + 2020
= x15 - x15 - x14 + x14 + x13 - x13 - x12 + ... + x4 + x3 - x3 - x2 + x2 + x + 2020
= x + 2020
= 101 + 2020 (Vì x = 100)
= 2121
Vậy A = 2121 khi x = 100
A = x15 - 101x14 + 101x13 - ... - 101x2 + 101x + 2020 tại x = 100
x = 100 => 101 = x + 1
Thế vào A ta được
A = x15 - ( x + 1 )x14 + ( x + 1 )x13 - ... - ( x + 1 )x2 + ( x + 1 )x + 2020
= x15 - ( x15 + x14 ) + ( x14 + x13 ) - ... - ( x3 + x2 ) + ( x2 + x ) + 2020
= x15 - x15 - x14 + x14 + x13 - ... - x3 - x2 + x2 + x + 2020
= x + 2020
= 100 + 2020 = 2120
A= 2006 X 2008 - 20072
A = 2006 . 2008 - 2007 . 2007
A = 2006 . ( 2007 + 1 ) - 2007 . ( 2006 + 1 )
A = 2006 . 2007 + 2006 - 2007 . 2006 + 2007
A = -1
B= 2016 X 2018 - 20172
B= 2016 . 2018 - 2017 . 2017
B = 2016 . ( 2017 + 1 ) - 2017 . ( 2016 + 1 )
B = 2016 . 2017 + 2016 - 2017 . 2016 + 2017
B = -1
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
Khi x = 100
<=> x + 1 = 101
B = x8 - (x + 1)x7 + (x + 1)x6 - ... - (x + 1)x + 25
= x8 - x8 - x7 + x7 + x6 - ... - x2 - x + 25
= - x + 25 = -75