Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)
=1-2/4=1/2
b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)
c: x-y=0 nên x=y
\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)
=2019
ĐK \(2018x\ge0\Rightarrow x\ge0\)
Khi đó \(x+\frac{1}{2018}\ge0;x+\frac{2}{2018}\ge0;...;x+\frac{2017}{2018}\ge0\)
Ta có \(\left|x+\frac{1}{2018}\right|+\left|x+\frac{2}{2018}\right|+...+\left|x+\frac{2017}{2018}\right|=2018x\)(Vế trái có 2017 hạng tử)
<=> \(x+\frac{1}{2018}+x+\frac{2}{2018}+...+x+\frac{2017}{2018}=2018x\)
<=> \(\left(x+x+...x\right)+\left(\frac{1}{2018}+\frac{2}{2018}+...+\frac{2017}{2018}\right)=2018x\)
2017 hạng tử x 2017 số hạng
=> \(2017x+\frac{1+2+...+2017}{2018}=2018x\)
=> \(x=\frac{2017.\left(2017+1\right):2}{2018}\)
\(\Rightarrow x=\frac{2017}{2}=1008,5\)(tm)
Vậy x = 1008,5
Vì \(\left|x+\frac{1}{2018}\right|\ge0\forall x\)
\(\left|x+\frac{2}{2018}\right|\ge0\forall x\)
\(\left|x+\frac{3}{2018}\right|\ge0\forall x\)
.......................................
\(\left|x+\frac{2017}{2018}\right|\ge0\forall x\)
\(\Rightarrow\)\(\left|x+\frac{1}{2018}\right|+\left|x+\frac{2}{2018}\right|+\left|x+\frac{3}{2018}\right|+...+\left|x+\frac{2017}{2018}\right|\ge0\forall x\)
mà \(\left|x+\frac{1}{2018}\right|+\left|x+\frac{2}{2018}\right|+\left|x+\frac{3}{2018}\right|+...+\left|x+\frac{2017}{2018}\right|=2018x\)
\(\Rightarrow\)\(2018x\ge0\forall x\)\(\Rightarrow\)\(x\ge0\)
\(\Rightarrow\)\(x+\frac{1}{2018}+x+\frac{2}{2018}+x+\frac{3}{2018}+...+x+\frac{2017}{2018}=2018x\)
\(\Leftrightarrow\)\(2017x+\frac{1}{2018}+\frac{2}{2018}+\frac{3}{2018}+...+\frac{2017}{2018}=2018x\)
\(\Leftrightarrow\)\(\frac{1+2+3+...+2017}{2018}=x\)
\(\Leftrightarrow\)\(x=\frac{\left[\left(2017+1\right).2017\right]:2}{2018}\)
\(\Leftrightarrow\)\(x=\frac{2035153}{2018}\)
\(\Leftrightarrow\)\(x=\frac{2017}{2}=1008,5\)
Vậy \(x=1008,5\)
Do x=2017 nên x+1=2018
Với x+1=2018 thì y trở thành
y= x5-(x+1).x4+(x+1).x3-(x+1).x2+(x+1).x-1
= x5- x5-x4+x4+x3-x3-x2+x-1=x-1
Với x=2017, giá trị biểu thức f(x) là
f(2017)=2017-1=2016
Vậy ...