Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{4}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=-\dfrac{1}{8}+\dfrac{1}{6}+\dfrac{-1}{18}\)
\(=\dfrac{-1}{72}\)
b: \(B=\left(-1\right)^2\cdot3^2+\left(-1\right)\cdot3+\left(-1\right)^3+3^3\)
\(=9-3-1+27=36-4=32\)
\(\hept{\begin{cases}3x=2y\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{3}{2}.x\\2x+\frac{3}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{3}{2}.x\\\frac{7}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{6}{7}\\y=\frac{9}{7}\end{cases}}}\)
\(\hept{\begin{cases}\frac{x}{3}=\frac{3y}{4}\\3x-y=4\end{cases}\Leftrightarrow\hept{\begin{cases}4x=9y\\3x-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9y}{4}\\\frac{3.9}{4}y-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\\frac{23}{4}.y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\y=\frac{16}{23}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{36}{23}\\y=\frac{16}{23}\end{cases}}}\)
Các phần sau làm tương tự nhé
Thay \(x=\dfrac{1}{2};y=-1\) vào B, ta được:
\(B=\left[\left(\dfrac{1}{2}\right)^3-4\cdot\left(\dfrac{1}{2}\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)^2-4\right]:\left[3\cdot\left(\dfrac{1}{2}\right)^3-3\cdot\left(-1\right)^2-3\cdot\left(-1\right)\right]\)
\(=\left(\dfrac{1}{8}+4\cdot\dfrac{1}{4}+3\cdot1-4\right):\left(3\cdot\dfrac{1}{8}-3\cdot1+3\right)\)
\(=\left(\dfrac{1}{8}+1+3-4\right):\left(\dfrac{3}{8}-3+3\right)\)
\(=\dfrac{1}{8}\cdot\dfrac{8}{3}=\dfrac{1}{3}\)
a) Ta có: \(3x=2y\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{2x+y}{4+3}=\dfrac{3}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7}.2\Leftrightarrow x=\dfrac{6}{7}\\y=\dfrac{3}{7}.3\Leftrightarrow x=\dfrac{9}{7}\end{matrix}\right.\)
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
a; Ta có: 2x=3y
nên x/3=y/2
=>x/21=y/14
Ta có: 5y=7z
nên y/7=z/5
=>y/14=z/10
=>x/21=y/14=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{15}=2\)
Do đó: x=42; y=28; z=20
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{-x+y+z}{-\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-120}{-\dfrac{4}{3}}=90\)
Do đó: x=165; y=20; z=25
c: x/3=y/4
nên x/15=y/20
y/5=z/7
nên y/20=z/28
=>x/15=y/20=z/28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)
Do đó: x=30; y=40; z=56
Tại x = 1 và y = 1 ta có:
B = 1 -1 + 3 -1 = 2
\(x^3y^3-x^3y^2+3x^2y^3x^3=-x^3y^2+3x^2y^3\)
Ta thay x = 1 ; y = 1 vì x = y = 1
Nên ta có : \(-1^3.1^2+3.1^2.1^3=-1.1+3.1.1=-1+3=2\)