Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: Tại x = 11 thì giá trị của B là
\(B=x\left(x^2-3x+3\right)=11\left(11^2-3.11+3\right)\)
\(=11.91=1001\)
a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))
- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.
- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)
b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013
x3 + 3x2 +3x +1 =(x+1)3 =(999+1)3 =10003 =1000000000
X3 _ 3X2 +3X -1 =(101-1)3 =1003 =1000000
\(a,x^2-y^2=\left(x+y\right)\left(x-y\right)=\left(87+13\right)\left(87-13\right)=100.74=7400\)\(b,x^3-3x^2+3x-1=\left(x-1\right)^3=\left(101-1\right)^3=100^3=1000000\)c,\(x^3+9x^2+27x+27=\left(x+3\right)^3=\left(97+3\right)^3=1000000\)
a) x2 - y2 = (x+y)(x-y)
Thay x=87; y=13 có:
(87+13)(87-13) = 100.74 = 7400
b)x3-3x2+3x-1 = x3 - 3x2.1+ 3x .12 -13 = (x-1)3
Thay x=101 có:
(101-1)3 =1003 =1000000
c)x3+9x2+27x+27= x3 +3x2.1+3x.12+33= (x+3)3
Thay x=97 có:
(97+3)3= 1003=1000000
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
Giải:
Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-3x^2.1+3x.1^2-1^3\)
\(=\left(x-1\right)^3\)
Tại \(x=101\), giá trị của biểu thức là:
\(\left(101-1\right)^3=100^3=1000000\)
Vậy ...
Dựa vào hằng đẳng thức thứ 5: (A-B)\(^3\)=A\(^3\)-3A\(^2\)B+3AB\(^2\)-B\(^3\)
=> x\(^3\)-3x\(^2\)+3x-1=(x-1)\(^3\)
Thay x=101, ta có :
(x-1)\(^3\)= (101-1)\(^3\)=100\(^3\)=1000000
101 mu 3 - 3 nhan x mu 2 cong 3x -1=101^3-3.101^2+3x-1=101-3+101