Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
Ta có :
\(B=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|x-2\right|+\left|5-x\right|\)
Vì \(\left\{{}\begin{matrix}\left|x+3\right|\ge x+3\\\left|x-2\right|\ge0\\\left|x-5\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge\left(x+3\right)+0+\left(5-x\right)\)
\(\Rightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge8\)
Vậy dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+3\ge0\\x-2=0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x=2\\5\ge x\end{matrix}\right.\) \(\Rightarrow x=2\)
Khi x = 2 thì Biểu thức B có giá trị nhỏ nhất là :
\(B=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\)
\(B=\left|2+3\right|+\left|2-2\right|+\left|2-5\right|=8\)
Giải:
Có:
\(B=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\)
Vì:
\(\left|x+3\right|\ge0\); \(\left|x-2\right|\ge x-2\) và \(\left|x-5\right|=\left|5-x\right|\ge5-x\)
\(\Leftrightarrow B\ge0+x-2+5-x\)
\(\Leftrightarrow B\ge\left(0-2+5\right)+\left(x-x\right)\)
\(\Leftrightarrow B\ge3\)
\(\Rightarrow Min_B=3\)
Vậy giá trị nhỏ nhất của biểu thức\(B=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\) là 3.
Chúc bạn học tốt!
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
Ta có: \(C=\left|x+5\right|-\left|x-2\right|=\left|-x-5\right|-\left|2-x\right|\)
Sử dụng bất đẳng thức: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\):
\(C=\left|-x-5\right|-\left|2-x\right|\le\left|-x-5-2+x\right|=\left|-7\right|\)
Dấu \(=\)xảy ra khi: \(\left|-x-5-2+x\right|=7\)
\(\Rightarrow\hept{\begin{cases}-x-5\ge0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-5\\x\le2\end{cases}}}\Rightarrow-5\le x\le2\)
Vậy \(-5\le x\le2\)thì \(MAX\)\(C=7\).
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
Ta có : |x + 3| \(\ge0\)
|x - 2| \(\ge0\)
|x - 5| \(\ge0\)
Nên |x + 3| + |x - 2| + |x - 5|\(\ge0\)
=> |x + 3| + |x - 2| + |x - 5| có giá trị nhỏ nhất là 0
Mà : x ko thể đồng thoqwif sảy ra 2 giá trị
=> GTNN của biểu thức là : 8 khi x = 2
thank bn nha