\(B=\text{​​}\)\(\ sum _ { i = 1 } ^ { 2020 }\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(=\sqrt{\dfrac{7-4\sqrt{3}}{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)

\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)

Bài 2: 

\(VT=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

19 tháng 11 2016

a,\(\left(\sqrt{6}-\sqrt{10}\right)\sqrt{4+\sqrt{15}}=\sqrt{6}.\sqrt{4-\sqrt{15}}-\sqrt{10}.\sqrt{4+\sqrt{15}}\)

=\(\sqrt{24+6\sqrt{15}}-\sqrt{40+10\sqrt{15}}=\sqrt{\left(\sqrt{15}+3\right)^2}-\sqrt{\left(\sqrt{15}+5\right)^2}\)

=\(\sqrt{15}+3-\sqrt{15}-5=-2\)

b,\(\left(\sqrt{3}+\sqrt{30}\right)\sqrt{10-\sqrt{41-4\sqrt{10}}}\)

=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{40-2\sqrt{40}+1}}\)

=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{\left(\sqrt{40}-1\right)^2}}\)

=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{40}+1}\)

=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{11-2\sqrt{10}}=\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{\left(\sqrt{10}-1\right)^2}\)

=\(\sqrt{3}\left(1+\sqrt{10}\right)\left(\sqrt{10}-1\right)=9\sqrt{3}\)

2,\(A=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)-a-2}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}\left(1-\sqrt{a}\right)-\sqrt{a}+4}{1-a}\right)\)

\(A=\left(\frac{a+\sqrt{a}-a-2}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}-a-\sqrt{a}+4}{1-a}\right)=\left(\frac{\sqrt{a}+2}{\sqrt{a}+1}\right).\left(\frac{1-a}{4-a}\right)\)

\(A=\frac{\sqrt{a}-2}{\sqrt{a}+1}.\frac{a-1}{a-4}=\frac{\sqrt{a}-1}{\sqrt{a}+2}\)

b, ̣để \(A=\frac{1}{2}\Rightarrow\frac{\sqrt{a}-1}{\sqrt{a}+2}=\frac{1}{2}\Leftrightarrow2\sqrt{a}-2=\sqrt{a}+2\Leftrightarrow\sqrt{a}=4\Leftrightarrow a=16\left(t.m\right)\)

19 tháng 11 2016

Bạn oi bài 2 hàng A thú 2 phải là \(\frac{\sqrt{a}-2}{\sqrt{a}+1}\) mình nhầm

27 tháng 7 2020

Mik sẽ viết lại đề bài.Bạn cs thể giải đầy đủ cho mik giùm nhen ko cần ngắn cứ dài . Cảm ơn

A=\(\sqrt{7}-4\sqrt{3}+\sqrt{4}-2\sqrt{3}\)

B=\(\left(2+\frac{5-\sqrt{5}}{\sqrt{5}-1}\right)\) \(\left(2-\frac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)

C=\(\left(\sqrt{3}+1\right)\) \(\frac{\sqrt{14}-6\sqrt{3}}{5+\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
27 tháng 7 2020

nguyen thao:

Câu A: vẫn giống ban đầu mà bạn? Mình nghĩ bạn vẫn viết sai đề. Đề đúng là \(A=\sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

\(B=\left[2+\frac{\sqrt{5}(\sqrt{5}-1)}{\sqrt{5}-1}\right]\left[2-\frac{\sqrt{5}(\sqrt{5}+1)}{\sqrt{5}+1)}\right]\)

\(=(2+\sqrt{5})(2-\sqrt{5})=2^2-(\sqrt{5})^2=4-5=-1\)

$C=\frac{(\sqrt{3}+1)(\sqrt{14}-6\sqrt{3})}{5+\sqrt{3}}$

$=\frac{-18-6\sqrt{3}+\sqrt{14}+\sqrt{42}}{5+\sqrt{3}}$ vẫn xấu lắm bạn ạ :''>

30 tháng 10 2020

a) Ta có: \(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)

b)Sửa đề: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

Ta có: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}\)

\(=-2\sqrt{b}\)

c) Ta có: \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

d) Ta có: \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)

\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)^2\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\left(\frac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)

\(=\left(a-2\sqrt{ab}+b\right)\cdot\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)

e) Ta có: \(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-3\right)\cdot\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)

\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)

\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)

\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)

\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)

\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)

\(\Rightarrow C=\sqrt{14}\)

\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)

\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

a) Bạn xem lại đề.

b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)

c)

\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)

\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)

21 tháng 7 2019
https://i.imgur.com/AzNcNln.jpg
21 tháng 7 2019

em cảm ơn nhiều ạ!

21 tháng 7 2019


\( 1)Q = \left( {\dfrac{1}{{y - \sqrt y }} + \dfrac{1}{{\sqrt y - 1}}} \right):\left( {\dfrac{{\sqrt y + 1}}{{y - 2\sqrt y + 1}}} \right)\\ Q = \left( {\dfrac{1}{{\sqrt y \left( {\sqrt y - 1} \right)}} + \dfrac{1}{{\sqrt y - 1}}} \right).\dfrac{{y - 2\sqrt y + 1}}{{\sqrt y + 1}}\\ Q = \dfrac{{1 + \sqrt y }}{{\sqrt y \left( {\sqrt y - 1} \right)}}.\dfrac{{{{\left( {\sqrt y - 1} \right)}^2}}}{{\sqrt y + 1}}\\ Q = \dfrac{{\sqrt y - 1}}{{\sqrt y }} \)

b) Thay \(y=3-2\sqrt{2}\) vào biểu thức ta được:

\(\dfrac{{\sqrt {3 - 2\sqrt 2 } - 1}}{{\sqrt {3 - 2\sqrt 2 } }} = \dfrac{{\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} - 1}}{{\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} }} = \dfrac{{ \sqrt 2 - 1-1}}{{\sqrt 2 -1}} \\= \dfrac{{\sqrt 2-2 }}{{ \sqrt 2 -1}} = \dfrac{{(\sqrt 2 -2)\left( { \sqrt 2+1 } \right)}}{{\left( { \sqrt 2-1 } \right)\left( {\sqrt 2+1 } \right)}} = - \sqrt 2 \)

\(2)B = \dfrac{{\sqrt y - 1}}{{{y^2} - y}}:\left( {\dfrac{1}{{\sqrt y }} - \dfrac{1}{{\sqrt y + 1}}} \right)\\ B = \dfrac{{\sqrt y - 1}}{{y\left( {y - 1} \right)}}:\dfrac{{\sqrt y + 1 - \sqrt y }}{{\sqrt y \left( {\sqrt y + 1} \right)}}\\ B = \dfrac{{\sqrt y - 1}}{{y\left( {\sqrt y - 1} \right)\left( {\sqrt y + 1} \right)}}:\dfrac{1}{{\sqrt y \left( {\sqrt y + 1} \right)}}\\ B = \dfrac{1}{{y\left( {\sqrt y + 1} \right)}}.\sqrt y \left( {\sqrt y + 1} \right)\\ B = \dfrac{{\sqrt y }}{y} \)

b) Thay \(y=3+2\sqrt{2}\) vào biểu thức ta được:

\(B = \dfrac{{\sqrt {3 + 2\sqrt 2 } }}{{3 + 2\sqrt 2 }} = \dfrac{{\sqrt {{{\left( {1 + \sqrt 2 } \right)}^2}} }}{{3 + 2\sqrt 2 }} = \dfrac{{\left( {1 + \sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)}}{{\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)}} = 3 - 2\sqrt 2 + 3\sqrt 2 - 4 = - 1 + \sqrt 2 \)

Nhiều quá @@

21 tháng 7 2019

em cảm ơn nhiều ạ!