K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)

=(3^4-1)(3^4+1)(3^8+1)(3^16+1)

=(3^8-1)(3^8+1)(3^16+1)

=(3^16-1)(3^16+1)

=3^32-1

2: B=(1-3^2)(1+3^2)*...*(1+3^16)

=(1-3^4)(1+3^4)(1+3^8)(1+3^16)

=1-3^32

7 tháng 7 2023

1

\(A=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^{16}-1\right)\left(3^{16}+1\right)\\ =3^{32}-1\)

 

\(B=\left(1-3\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^2\right)\left(1+3^2\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^4\right)\left(1+3^4\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^8\right)\left(1+3^8\right)\left(3^{16}+1\right)\\ =\left(1-3^{16}\right)\left(1+3^{16}\right)=1-3^{32}\)

3: =(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)

=(5^4-1)(5^4+1)(5^8+1)(5^16+1)

=(5^8-1)(5^8+1)(5^16+1)

=(5^16-1)(5^16+1)

=5^32-1

4:

D=(4^4-1)(4^4+1)(4^8+1)*....*(4^64+1)

=(4^8-1)(4^8+1)*...*(4^64+1)

=...

=4^128-1

5: =(5^2-1)(5^2+1)(5^4+1)*...*(5^128+1)+(5^256-1)

=(5^4-1)(5^4+1)*...*(5^128+1)+5^256-1

=5^256-1+5^256-1

=2*5^256-2

7 tháng 7 2023

thsu là rất ngưỡng mộ anh ạ 🥹 em mấy lần off vì quá nhác nhưng lần nào ngoi lại lên cũng thấy anh cày chăm chỉ quá tr 😭

18 tháng 6 2018

a) \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)

\(=\left(a^2+\left(-b\right)^2+c^2-2ab+2ac-2bc\right)-\left(b^2-2bc+c^2\right)+2ab-2ac\)

\(=a^2+b^2+c^2-2ab+2ac-2bc-b^2+2bc-c^2+2ab-2ac\)

\(=a^2+b^2-b^2+c^2-c^2-2ab+2ab+2ac-2ac-2bc+2bc\)

\(=a^2\)

6 tháng 10 2019

Áp dụng HĐT đáng nhớ :

\(\left(a-b\right)\left(a+b\right)=a^2-b^2\) . Ta có :

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)

\(\Rightarrow A=\frac{3^{64}-1}{2}\)

Chúc bạn học tốt !!!

19 tháng 10 2020

a) Ta có F = \(\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)

=> 8F = \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^8-1\right)\left(3^8+1\right)-3^{16}=3^{16}-1-3^{16}=-1\)

=> F = -1/8

b) Ta có G = \(\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)-\frac{2^{24}}{7}\)

=> 7G = 7(23 + 1)(26 + 1)(212 + 1) - 224

=> 7G = (23 - 1)(23 + 1)(26 + 1)(212 + 1) - 224

=> 7G = (26 - 1)(26 + 1)(212 + 1) - 224

=> 7G = (212 - 1)(212 + 1) - 224

=> 7G = 224 - 1 - 224

=> 7G = -1

=>  G = -1/7

19 tháng 10 2020

\(F=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)

<=> \(\left(3^2-1\right)F=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\left(3^2-1\right)\frac{3^{16}}{8}\)

<=> \(8F=\left(3^4-1\right)\left(3^4+1\right)\left(3^8-1\right)-3^{16}\)

<=> \(8F=\left(3^8+1\right)\left(3^8-1\right)-3^{16}\)

<=> \(8F=\left(3^{16}-1\right)-3^{16}=-1\)

<=> F = -1/8

Câu G làm tương tự

8 tháng 6 2023

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^{16}-1\right)\left(2^{16}+1\right)\\ =2^{32}-1 \)

29 tháng 6 2017

Baì này mình mới làm lúc sáng bạn vào câu hỏi tương tự có đấy

8 tháng 7 2018

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{2}< 3^{32}-1=C\)

4 tháng 7 2019

Lời giải :

\(\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{4}\cdot\left(3+1\right)\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{4}\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{4}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{4}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{4}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\frac{1}{4}\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=\frac{3^{64}-1}{4}\)

4 tháng 7 2019

Thank you anh