ΔABC có AB = AC. Gọi D là trung điểm của BC. Chứng minh rằng:

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2023

 

`a)` Vì `D` là trung điểm `BC=>DB=DC`

Xét `\triangle ABD` và `\triangle ACD` có:

   `{:(AB=AC),(AD\text{ là cạnh chung}),(BD=CD):}}=>\triangle ABD=\triangle ACD` (c-c-c)

`b)`  Vì `D` là tđ của `BC=>AD` là đường trung tuyến trong `\triangle ABC` cân tại `A`

   `=>AD` đồng thời là đường phân giác của `\triangle ABC`

  `=>AD` là tia phân giác của `\hat{BAC}`

`c)` Vì `D` là tđ của `BC=>AD` là đường trung tuyến trong `\triangle ABC` cân tại `A`

  `=>AD` đồng thời là đường cao của `\triangle ABC`

  `=>AD \bot BC`

`a,` Xét Tam giác `ABD` và Tam giác `ACD` có (bạn lưu ý ghi đúng tên của Tam giác để có các cạnh và góc tương ứng nhé)

`AB = AC (g``t)`

AD chung

`DB = DC (g``t)`

`=>` Tam giác `ABD =` Tam giác `ACD (c-c-c)`

`b,` Vì Tam giác `ABD =` Tam giác `ACD (a)`

`=>` \(\widehat{BAD}=\widehat{CAD}\) (2 góc tương ứng)

`=> AD` là tia phân giác của \(\widehat{BAC}\) 

`c,` Vì Tam giác `ABD =` Tam giác `ACD (a)`

`=>` \(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí kề bù

`=>`\(\widehat{ADB}+\widehat{ADC}=180^0\)

`=>` \(\widehat{ADB}=\widehat{ADC}=\) \(\dfrac{180}{2}=90^0\)

`=>`\(AD\perp BC\) `(đpcm)`

loading...

 

21 tháng 2 2017

E D C B H K x M N A

a) Xét \(\Delta BEA\)\(\Delta DCA\) có:

AE = AC (gt)

\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)

AB = AD (gt)

\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)

\(\Rightarrow BE=CD\) (2 cạnh t/ư)

b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)

\(DN=\frac{1}{2}CD\) (N là tđ)

mà BE = CD \(\Rightarrow BM=DN\)

\(\Delta BEA=\Delta DCA\) (câu a)

\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)

hay \(\widehat{MBA}=\widehat{NDA}\)

Xét \(\Delta ABM\)\(\Delta ADN\) có:

AB = AD (gt)

\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)

BM = DN (c/m trên)

\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)

\(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)

\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)

\(\Rightarrow M,A,N\) thẳng hàng.

22 tháng 2 2017

Bài làm rất công phu

14 tháng 9

a) EA = EH

Xét ΔABE và ΔHBE vuông tại A và H:

  • Góc ABE chung
  • Góc BAE = góc EBC (BE là phân giác)
    ⇒ ΔABE ∽ ΔHBE
    ⇒ EA = EH

b) EK = EC

Xét ΔAEC và ΔHEK vuông tại A và H:

  • Góc tại E chung
  • EA = EH (câu a)
    ⇒ ΔAEC ∽ ΔHEK
    ⇒ EK = EC

c) BE ⊥ KC

Vì EK = EC ⇒ ΔECK cân tại E
⇒ BE vừa là phân giác vừa là đường cao
⇒ BE ⊥ KC

15 tháng 8 2021

A B C D E K F

a, K;F là trung điểm của BD; BC (gt) 

=> FK là đtb của tg BDC 

=> FK // DC 

mà DC // AB do ABCD là hình thang

=> FK//AB

b, K;E là trung điểm của BD; AD => KE là đtb của tg ABD

=> KE = 1/2 AB VÀ KE //  AB

có AB = 4 

=> ke = 2 cm

c, có KE // AB mà KF // AB

=> E;K;F thẳng hàng (tiên đề ơ clit)

NM
5 tháng 10 2021

nếu \(a\perp b\) và b//c thì ta có : \(a\perp c\)

vậy chọn đáp án B

17 tháng 8

a) Tính số đo các góc BOD, DOE, COE

Dựa vào các số đo đã cho:

  • ∠BOC = 42°
  • ∠AOD = 97°
  • ∠AOE = 56°

Giả sử các tia nằm trên cùng một mặt phẳng và theo thứ tự: B → O → C → D → E → A

Tính từng góc:

  • ∠BOD = ∠AOD − ∠BOC = 97° − 42° = 55°
  • ∠DOE = ∠AOE − ∠AOD = 56° − 97° = −41° → không hợp lý
    → Vậy ta lấy: ∠DOE = ∠AOD − ∠AOE = 97° − 56° = 41°
  • ∠COE = ∠BOD + ∠DOE = 55° + 41° = 96°


  • b) Tia OD có phải là phân giác của góc COE không?
  • Phân giác là tia chia góc thành hai phần bằng nhau.
  • ∠COE = 96°, mà ∠BOD = 55°, ∠DOE = 41°
  • 55° ≠ 41°, nên tia OD không phải là phân giác của ∠COE