Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo :
Câu hỏi của nguyen thi thom - Toán lớp 7 - Học toán với OnlineMath
Học tốt!!!
Câu hỏi của Chi Chi - Toán lớp 7 - Học toán với OnlineMath
Tham khảo tại link trên.
a) Xét \(\Delta EAB\)và \(\Delta DAC\)có:
\(AE=AD\)(gt)
\(\widehat{EAB}=\widehat{DAC}\)(đối đỉnh)
\(AB=AC\)(Do tam giác ABC cân tại A)
Suy ra \(\Delta EAB=\Delta DAC\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)(hai cạnh tương ứng)
E D A C B F I
a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )
=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)
=> BE = DC
b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC
=> ^EDI = ^DIC mà ^EDI = ^BDI ( DI là phân giác ^BDE )
=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.
c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID = 2. ^BID = 2. ^CIF( theo b) (1)
Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF (2)
Lại có: ^CFD là góc ngoài của \(\Delta\)FCI => ^CFD = ^CIF + ^ICF (3)
Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED ( ^CED = ^BCA vì ED //BC )
B C A D E
a) Trong Tam giác ABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)(tổng 3 góc của tam giác)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
Nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}\) (1)
Ta có: AD = AE (gt)
Nên tam giác ADE cân tại A
Trong tam giác ADE có: \(\widehat{DAE}+\widehat{ADE}+\widehat{AED}=180^o\)(tổng 3 góc của tam giác)
\(\Rightarrow\widehat{ADE}+\widehat{AED}=180^o-\widehat{DAE}\)
Mà \(\widehat{ADE}=\widehat{AED}\)(tam giác ADE cân tại A)
Nên \(\widehat{ADE}=\widehat{AED}=\frac{180^o-\widehat{DAE}}{2}\) (2)
Mặt khác \(\widehat{BAC}=\widehat{DAE}\)(2 góc đối đỉnh) (3)
Từ (1), (2), (3) \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\widehat{BAC}=\widehat{DAE}\)
Mà các góc này ở vị trí so le trong nên DE // BC
b) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
\(AE=AD\left(gt\right)\)
\(\widehat{EAB}=\widehat{DAC}\)(2 góc đối đỉnh)
\(AB=AC\)(tam giác ABC cân tại A)
Do đó \(\Delta ABE=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)(2 cạnh tương ứng)
a) Vì tam giác ABc cân nên :
góc B = góc C
Lại vì AE=Ad => tam giác AED cần
=> Góc E = góc D
Ta có:
góc E + góc D+ góc EAD = Góc B + góc C+ góc BAC(=180 độ)
mà góc EAD = góc BAC ( đói đỉnh)
=> góc E + góc D = góc B+ góc C
mặt khác :góc B = góc C , Góc E = góc D
=> Góc E= góc C mà 2 góc này ơ vị trí so le trong nên :ED// BC ( đpcm)
b )Xét tam giác EAB và tam giác DAC có :
AE= AD ( gt )
AB=AC ( cmt)
Góc EAB= góc CAD ( đói đỉnh)
=> tam giacs EAB = tam giác DAC(c.g.c)
=> EB=CD( 2 cạnh tương ứng ( đpcm)