K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f: B-A=21/4xy^3-7/6x^3y-5xy^3+5/8x^3y=1/4xy^3-13/24x^3y

=>A-B=13/24x^3y-1/4xy^3

a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2

b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y

=>A-B=12xy^2-14x^2y

c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2

=>A-B=-5x^2y^3-x^3y^2

d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2

30 tháng 5 2023

a/

\(\Leftrightarrow A=\dfrac{3}{8}xy^2+B-\dfrac{5}{6}x^2y+\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\\ \Leftrightarrow A-B=-\dfrac{1}{12}x^2y-\dfrac{1}{4}xy^2\)

b/

\(\Leftrightarrow A-B=5xy^3-\dfrac{5}{8}yx^3-\dfrac{21}{4}xy^3+\dfrac{3}{7}x^3y\\ \Leftrightarrow A-B=-\dfrac{1}{4}xy^3-\dfrac{11}{56}x^3y\)

 

a: A+2xy^2-x^2y-B=3x^2y-4xy^2

=>A-B=3x^2y-4xy^2-2xy^2+x^2y=4x^2y-6xy^2

=>A=4x^2y; B=6xy^2

b: 5xy^2-A-6x^2y+B=-7xy^2+8x^2y

=>-A+B=-7xy^2+8x^2y-5xy^2+6x^2y=14x^2y-12xy^2

=>A=12xy^2; B=14x^2y

c: 5xy^3-A-5/8x^3y+B=2+1/4xy^3-7/6x^3y

=>-A+B=2+1/4xy^3-7/6x^3y-5xy^3+5/8x^3y

=>B-A=-19/4xy^3-13/24x^3y+2

=>B=-19/4xy^3; A=13/24x^3y-2

29 tháng 3 2022

yggucbsgfuyvfbsudy

30 tháng 3 2022

????????

28 tháng 9 2016

2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)

Vậy bđt ban đầu được chứng minh.

13 tháng 4 2017

Ui đau đầu quá !

30 tháng 8 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+2x-x-1\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)

\(A=2\left(x^2+2.x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-\dfrac{1}{2}\right)\)

\(A=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)

\(2\left(x+\dfrac{1}{4}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

\(\Rightarrow Amin=-\dfrac{9}{8}\Leftrightarrow x=-\dfrac{1}{4}\)

\(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2.2x.y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\)

\(\left(2x-y\right)^2\ge0\) với mọi x và y

\(y^2\ge0\) với mọi y

\(\Rightarrow\left(2x-y\right)^2+y^2+1\ge1\)

\(\Rightarrow Bmin=1\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(C=5x-3x^2+2\)

\(C=-\left(3x^2-5x-2\right)\)

\(C=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)

\(C=-3\left(x^2-2.x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{25}{36}-\dfrac{2}{3}\right)\)

\(C=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)

\(-3\left(x-\dfrac{5}{6}\right)^2\le0\) với mọi x

\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)

\(\Rightarrow Cmax=\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)

\(D=-8x^2+4xy-y^2+3\)

\(D=-\left(4x^2-4xy+y^2\right)-4x^2+3\)

\(D=-\left(2x-y\right)^2-4x^2+3\)

\(-\left(2x-y\right)^2\le0\) với mọi x và y

\(-4x^2\le0\) với mọi x

\(\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\) với mọi x và y

\(\Rightarrow Dmax=3\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(E=x^2-8x+38\)

\(E=x^2-2.x.4+16+22\)

\(E=\left(x-4\right)^2+22\)

\(\left(x-4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-4\right)^2+22\ge22\) với mọi x

\(\Rightarrow Emin=22\Leftrightarrow x=4\)

\(F=6x-x^2+1\)

\(F=-\left(x^2-6x-1\right)\)

\(F=-\left(x^2-2.x.3+9-9-1\right)\)

\(F=-\left(x-3\right)^2+10\)

\(-\left(x-3\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-3\right)^2+10\le10\)

\(\Rightarrow Fmax=10\Leftrightarrow x=3\)

Bài 1: 

a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3-2x+5\right)\)

\(=\left(2x+1\right)\left(8-2x\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)

\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\left(3x-2\right)\left(3x-6\right)\)

\(=3\left(3x-2\right)\left(x-2\right)\)

Bài 2: 

a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)

\(=\left(a-b\right)\left(2a-4b\right)\)

\(=2\left(a-b\right)\left(a-2b\right)\)

f: Ta có: \(x^2-6xy+9y^2+4x-12y\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-3y+4\right)\)