Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1+3}{x+1}=\frac{x+1}{x+1}+\frac{3}{x+1}\)
\(\Rightarrow x+1\in\text{Ư}\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Ta có :
\(x+1+3⋮x+1\)
=> \(x+1+3-\left(x+1\right)⋮x+1\)
=> \(3⋮x+1\)
=> \(x+1\inƯ_3\)
=> \(x+1\in\left\{1;3;-1;-3\right\}\)
=> \(x\in\left\{0;2;-2;-4\right\}\)
\(\frac{x+5}{x+1}=\frac{x+4+1}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}\)
\(\Rightarrow x+1\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{0;1;3;-2;-3;-5\right\}\)
x+5\(⋮\)x+1
x+1+4\(⋮\)x+1
Vì x+1\(⋮\)x+1
Buộc 4\(⋮\)x+1=>x+1ϵƯ(4)={1;2;4}
Với x+1=1=>x=0
x+1=2=>x=1
x+1=4=>x=3
Vậy xϵ{0;1;3}
Giải:
Ta có:
\(x+8⋮x+1\)
\(\Rightarrow\left(x+1\right)+7⋮x+1\)
\(\Rightarrow7⋮x+1\)
\(\Rightarrow x+1\in\left\{1;-1;7;-7\right\}\)
+) \(x+1=1\Rightarrow x=0\)
+) \(x+1=-1\Rightarrow x=-2\)
+) \(x+1=7\Rightarrow x=6\)
+) \(x+1=-7\Rightarrow x=-8\)
Vậy \(x\in\left\{0;-2;6;-8\right\}\)
\(\frac{x+8}{x+1}=\frac{x+7+1}{x+1}=\frac{x+1}{x+1}+\frac{7}{x+1}\)
\(\Rightarrow x+1\in\text{Ư}\left(7\right)=\left\{1;7;-1;-7\right\}\)
\(\Rightarrow x\in\left\{0;6;-2;-8\right\}\)
\(\frac{x+4}{x}=\frac{x}{x}+\frac{4}{x}\)
\(\Rightarrow x\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
Ta có :
\(x+4⋮x\)
=> \(x+4-x⋮x\)
=> \(4⋮x\)
=> \(x\inƯ_4\)
=> x\(\in\left\{1;2;4;-1;-2;-4\right\}\)
a) (3x - 1)2 = 100
(3x - 1)2 = 102
=>3x - 1 = 10
=> 3x = 10 + 1
3x = 11
x = 11/3
a, \(2.x^x=10.3^{12}+8.27^4\)
\(2.x^x=10.3^{12}+8.3^{12}\)
\(2.x^x=3^{12}.\left(10+8\right)\)
\(2.x^x=3^{12}.18\)
\(2.x^x=3^{12}.2.3^3\)
\(2.x^x=3^{15}.2\)
\(x^x=3^{15}\)( Hình như sai đề )
b,\(3^{2x+2}=9^{x+3}\)
\(3^{2x+2}=3^{2x+3}\)
Ta có :
\(9⋮2x+1\)
=> \(2x+1\inƯ_9\)
=> \(2x+1\in\left\{1;3;9\right\}\)
=> \(2x\in\left\{0;2;8\right\}\)
=> \(x\in\left\{0;1;4\right\}\)
Vậy \(x\in\left\{0;1;4\right\}\)