\(\frac{1}{1+2}\)+ \(\frac{1}{1+2+3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

Ta có công thức 1 + 2 + ... + n = n(n+1)/2

\(S=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{2018.2019}{2}}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{2019}\right)=...\)tự tính

16 tháng 3 2018

\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}\)

\(=\frac{1}{2.3:2}+\frac{1}{3.4:2}+...+\frac{1}{2018.2019:2}=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2018.2019}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2018}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{2019}\right)=2.\frac{2017}{4032}=\frac{2017}{2019}\)

Dung giải hay nhỉ? Lâu nay mới on =))))

24 tháng 4 2017

\(\left(6+\left(\frac{1}{2}\right)^3-\left|-\frac{1}{2}\right|\right):\frac{3}{12}\)

\(=\left(6+\frac{1}{8}+\frac{1}{2}\right):\frac{1}{4}\)

=\(\frac{53}{8}:\frac{1}{4}\)

\(=\frac{53}{2}\)

24 tháng 4 2017

a)30/60,-40/60,45/60,48/60

45/60>30/60>-40/60>-48/60

=3/4>1/2>-2/3>-4/5

16 tháng 4 2018

\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2017}}\)

\(2S-S=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2018}}\right)\)

\(\Rightarrow S=2-\frac{1}{2^{2018}}+1-1+\frac{1}{2}-\frac{1}{2}+.....+\frac{1}{2^{2017}}-\frac{1}{2^{2017}}=2-\frac{1}{2^{2018}}\)\(=\frac{2^{2019}-1}{2^{2018}}\)

16 tháng 4 2018

bảo bình chứng tỏ S <1 nhé

16 tháng 4 2018

Bài 1:

a) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) ta có: \(A=1+2+2^2+2^3+...+2^{2018}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2019}\)

\(\Rightarrow2A-A=2^{2019}-2\)

\(\Rightarrow A=2^{2019}-2\)

Chúc bn học tốt !!!!!

16 tháng 4 2018

a, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

24 tháng 6 2020

 P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\) 

P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)

P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)

P\(=\frac{1.51}{50.2}=\frac{51}{100}\)

26 tháng 7 2018

Nhanh tay lên mk k cho , hôm nay mk có chuyện vui lên hào phóng tí!

26 tháng 7 2018

1,

\(\left(\frac{4}{9}-\frac{3}{7}-\frac{4}{11}\right)-\left(\frac{11}{7}+\frac{4}{9}-\frac{48}{11}\right)\)

\(=\frac{4}{9}-\frac{3}{7}-\frac{4}{11}-\frac{11}{7}-\frac{4}{9}+\frac{48}{11}\)

\(=\left(\frac{4}{9}-\frac{4}{9}\right)-\left(\frac{3}{7}+\frac{11}{7}\right)+\left(\frac{48}{11}-\frac{4}{11}\right)\)

\(=0-2+4\)

\(=2\)

2,

a, \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2018}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2019}{2018}\)

\(=\frac{2019}{2}\)

b, \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2018}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2017}{2018}\)

\(=\frac{1}{2018}\)