Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11: \(=\left(1+\dfrac{1}{98}-1-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)=0\)
12: \(=\dfrac{7}{17}+\dfrac{10}{17}\cdot\left(\dfrac{-6+5}{10}\right)^2\)
\(=\dfrac{7}{17}+\dfrac{10}{17}\cdot\dfrac{1}{100}=\dfrac{7}{17}+\dfrac{1}{170}=\dfrac{71}{170}\)
Ta có 1.4/2.3=(2-1)(3+1)/2.3=1-1/2+1/3-1/2.3
2.5/3.4=(3-1)(4+1)/3.4=1-1/3+1/4-1/3.4
...
Suy ra N=(1-1/2+1/3-1/2.3)+(1-1/3+1/4-1/3.4)+....+(1-1/99+1/100-1/99.100)
N=\(98+\dfrac{1}{100}-\dfrac{1}{2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-....-\dfrac{1}{99.100}\)
Xét P=\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
P=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
P=\(\dfrac{1}{2}-\dfrac{1}{100}\)
Vậy N=98-1+\(\dfrac{1}{50}\)
N=\(97+\dfrac{1}{50}\)
Vậy 97<N<98(ĐPCM)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)
=\(1-\dfrac{1}{5}\)
=\(\dfrac{4}{5}\)
Đặt : \(B=\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)
\(B=\left(\dfrac{99}{1}+1\right)+\left(\dfrac{98}{2}+1\right)+...+\left(\dfrac{1}{99}+1\right)-99\)
\(B=\dfrac{100}{1}+\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}-99\)
\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\left(100-99\right)\)
\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\dfrac{100}{100}\)
\(B=100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)
Ta có : \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)
\(\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right)\left(\dfrac{1}{12}-\dfrac{1}{3}+\dfrac{1}{4}\right)\\ =\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right)\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)\\ =\left(\dfrac{98}{99}+\dfrac{89}{100}+\dfrac{100}{101}\right).0\\ =0\)
\(=\left(1-\dfrac{1}{99}-1-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)\)
\(=\left(-\dfrac{1}{99}-\dfrac{1}{98}\right)\cdot\dfrac{3}{10}=\dfrac{-197\cdot3}{9702\cdot10}=\dfrac{-197}{32340}\)