Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy=\frac{x}{y}\)
=> xy.y = x
=> y2 = 1
=> \(y=\orbr{\begin{cases}1\\-1\end{cases}}\)
thay từng giá trị y = 1 ; y = -1 vào đẳng thức :
x + y = \(\frac{x}{y}\)
Với y = 1
=> x không có giá trị
Với y = -1
=> x = \(-\frac{1}{2}\)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
x-2y= 2(x+y)
=> x-2y = 2x+2y
=> -2y-2y= 2x-x
=> x= -4y
Thay x= -4y vào x-y= x/y
=> -4y-y = -4y/ y
=.> -5y= -4
=> y =4/5
=> x= -16/5
bạn ơi mk làm nhanh chỗ tìm x nha
chỗ tìm x bạn làm vậy nè: x =-4y hay x= -4 . 4/5 = -16/5
b)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
=>0x=-1(L)
*)y=-1
=>x-1=-x
=>2x=1
=>x=1/2
Vậy y=-1 x=1/2
c)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x-1=x
=>0x=1(L)
*)y=-1
=>x+1=-x
=>2x=-1
=>x=-1/2
Vậy y=-1 x=-1/2
d)x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
=>(x+y+z)2=9
=>x+y+z=3 hoặc x+y+z=-3
*)x+y+z=3
=>x=-5:3=-5/3
y=9:3=3
z=5:3=5/3
*)x+y+z=-3
=>x=-5:(-3)=5/3
y=9:(-3)=-3
z=5:(-3)=-5/3
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3
2.
a) \(3.\left(x-1\right)-2.\left|x+3\right|\)
TH1: \(x\ge-3.\)
\(3.\left(x-1\right)-2.\left|x+3\right|\)
\(=3x-3-2.\left(x+3\right)\)
\(=3x-3-\left(2x+6\right)\)
\(=3x-3-2x-6\)
\(=x-9.\)
TH2: \(x< -3.\)
\(3.\left(x-1\right)-2.\left|x+3\right|\)
\(=3.\left(x-1\right)-2.\left[-\left(x+3\right)\right]\)
\(=3x-3-2.\left(-x-3\right)\)
\(=3x-3-\left(-2x-6\right)\)
\(=3x-3+2x+6\)
\(=5x+3.\)
Chúc bạn học tốt!
Bạn ơi phần a là như này đúng không ạ :
TH1 : \(x+3\ge0\Leftrightarrow x\ge-3\)
Từ \(xy=x:y\)=> \(xy=\frac{x}{y}\)=> \(xy^2=x\)
=> \(y^2=1\) => \(y=\pm1\)
Thay \(y=1\) vào \(x-y=x.y\) ta có : \(x-1=x.1\)
=> \(x-1=x\)=> \(0x=1\)( vô lý) => loại
Thay \(y=-1\) vào \(x-y=x.y\)ta có: \(x-\left(-1\right)=x.\left(-1\right)\)
=> \(x+1=-x\)=> \(2x=-1\)
=> \(x=\frac{-1}{2}\)
\(v\text{ậy}\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
1
a/
[x+1].[x-2] < 0 => x+1 và x-2 trái dấu
mà x+1 > x-2
=> x+1 > 0 ; x-2 < 0
=> -1 < x < 2 , x thuộc Q
b/
T.tự -2/3 < x < 2 , x thuộc Q
2.
x+y = xy
=> y = xy -x = x.[y-1]
=> x : y = y-1 = x+y
=> x = -1
thay vào x+y = xy
=> y-1 = -y => 2y = 1 => y= 1/2
Vậy x= -1 ; y = 1/2