K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2018

Bài 1: Đề sai

Bài 2:

a) Ta có:

\(x^3+y^3\) \(=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Thay \(x^3+y^3=95\)\(x^2-xy+y^2=19\) vào, ta được:

\(95=\left(x+y\right).19\)

\(\Rightarrow A=x+y=\dfrac{95}{19}=5\)

Vậy A = x + y = 5

b) Ta có:

\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

Thay a + b = -3 và a.b = 2 vào ta được:

\(\left(-3\right)^3=a^3+b^3+3.2.\left(-3\right)\)

\(\Rightarrow B=a^3+b^3=9\)

Bài 3:

Gọi 4 số tự nhiên liên tiếp lần lượt là n ; n + 1 ; n + 2 ; n + 3 ( n thuộc N )

Theo đề ta có:

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt \(n^2+3n+1=a\), ta được

\(\left(a-1\right)\left(a+1\right)+1\)

\(=a^2-1+1\)

\(=a^2\)

\(=\left(n^2+3n+1\right)^2\) là một số chính phương

Vậy tích của bốn số tự nhiên liên tiếp cộng 1 là số chính phương

21 tháng 11 2022

Bài 1:

\(\Leftrightarrow x^3+x^2-x-1-x\left(x^2-9\right)=-27\)

=>x^3+x^2-x-1-x^3+9x=-27

=>x^2+8x-1+27=0

=>x^2+8x+26=0

=>\(x\in\varnothing\)

24 tháng 6 2015

a)a+b+c=9

=>(a+b+c)2=81

=>a2+b2+c2+2ab+2bc+2ca=81

Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60

=>2(ab+bc+ca)=-60=>ab+bc+ca=-30

b)x+y=1

=>(x+y)3=1

=>x3+3x2y+3xy2+y3=1

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy=1(Do x+y=1)

c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)

=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0

d)đang tìm hướng giải

13 tháng 1 2015

1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)

b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)

13 tháng 8 2016

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

12 tháng 3 2023

Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z

=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)

=�+��+1��+�+1=xy+x+1x+xy+1

=1=1

12 tháng 7 2017

b) \(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x-y\right)\left[\left(x+y\right)^2-2xy+xy\right]-3xy\)

\(=\left(x-y\right)\left(1-xy\right)-3xy\)

\(=x-x^2y-y\)

17 tháng 10 2016

\(ab\left(x-y\right)^3-8ab=ab\left[\left(x-y\right)^3-2^3\right]=ab\left(x-y-2\right)\left[\left(x-y\right)^2+2\left(x-y\right)+4\right]\)

\(36x^2-y^2+6y-9=36x^2-\left(y-3\right)^2=\left(6x-y+3\right)\left(6x+y-3\right)\)

\(8x^2+10x-3=0\)

\(8x^2-2x+12x-3=0\)

\(2x\left(4x-1\right)+3\left(4x-1\right)=0\)

\(\left(4x-1\right)\left(2x+3\right)=0\)

\(\left[\begin{array}{nghiempt}4x-1=0\\2x+3=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}4x=1\\2x=-3\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{4}\\x=-\frac{3}{2}\end{array}\right.\)

\(\left(2x-5\right)^2-\left(x+4\right)^2=0\)

\(\left(2x-5+x+4\right)\left(2x-5-x-4\right)=0\)

\(\left(3x-1\right)\left(x-9\right)=0\)

\(\left[\begin{array}{nghiempt}3x-1=0\\x-9=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=9\end{array}\right.\)

20 tháng 10 2016

còn bài cuối thì sao à pn

3 tháng 7 2017

cho mk sửa lại đề chút nhoa:

b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b

3 tháng 7 2017

a.Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\)

\(\Rightarrow10+2xy=4\Rightarrow xy=-3\)

Ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.\left[\left(x+y\right)^2-2xy-xy\right]\)

=\(2.\left[2^2-3.xy\right]=2.\left[4-3.\left(-3\right)\right]=26\)

b.Từ \(x-y=a\Rightarrow\left(x-y\right)^2=a^2\Rightarrow x^2-2xy+y^2=a^2\)

\(\Rightarrow b-2xy=a^2\Rightarrow xy=\frac{b-a^2}{2}\)

Ta có \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=a.\left[\left(x-y\right)^2+3xy\right]\)

\(=a.\left[a^2+3.\frac{b-a^2}{2}\right]=a.\frac{2a^2+3b-3a^2}{2}=\frac{-a^3+3ab}{2}\)

3 tháng 7 2017

a.Từ giả thiết: 
x+y=1. 
=> (x+y)^3=1^3=1 
=> x^3 +3x^2.y+3x.y^2+y^3=1(HĐT) 
=> x^3+y^3+3xy(x+y)=1 
=> x^3+y^3+3xy.1=1 
<=> x^3+y^3+3xy=1

b.x3-y3-3xy=x3-y3-3xy.1

Mà x-y=1 nên

x3-y3-3xy=x3-y3-3xy(x-y)

x3-y3-3x2y+3xy

=(x-y)3=13=1

29 tháng 12 2017

B1 :

a, B = (x+1)^2+(y-2)^2 = (99+1)^2+(102-2)^2 =  100^2+100^2 = 20000

b, = (2x^2+16x+32)-2y^2

   = 2.(x+4)^2-2y^2

   = 2.[(x+4)^2-y^2] = 2.(x+4-y).(x+4+y)

c, <=> (x^2-3x)+(2x-6) = 0

<=> (x-3).(x+2) = 0

<=> x-3=0 hoặc x+2=0

<=> x=3 hoặc x=-2

B2 :

P = (3-x).(x+3)/x.(x-3) = -(x+3)/x = -x-3/x

k mk nha

29 tháng 12 2017

Bai 1

a)B=(x+1)2+(y-2)2

     Voi x=99,y=102

=>B= 1002+1002

       =20000

b)\(2x^2-2y^2+16x+32\)

=\(2\left[\left(x^2+8x+16\right)-y^2\right]\)

=\(2\left[\left(x+4\right)^2-y^2\right]\)

=2(x-y+4)(x+y+4)

c)\(x^2-3x+2x-6=0\)

=>x(x-3)+2(x-3)=0

=>(x-3)(x+2)=0

=>x=-2;3

Bai 2

\(P=\frac{9-x^2}{x^2-3x}\)

    =\(-\frac{x^2-9}{x\left(x-3\right)}\)

   =\(-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)

=\(\frac{-x-3}{x}\)