Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: MB = MC (giả thiết)
DA = DB (Giả thiết)
⇒ DM là đường trung bình của Δ ABC
⇒ DM//AC
Mặt khác ABC vuông tại A
⇒ AC ⊥ AB ⇒ DM ⊥ AB ⇒ DE ⊥ AB (*)
E là điểm đối xứng với M qua D ⇒ DM = DE (**)
Từ (*) và (**) ta suy ra: Điểm E đối xứng với M qua AB
b) Ta có AB ⊥ EM và DE = DM, DA = DB
⇒ Tứ giác AEBM là hình thoi
⇒ AE//BM mà BM = MC ⇒ AE//MC và AE = MC
⇒ tứ giác AEMC là hình bình hàng
c) Ta có BC = 4 (cm) ⇒ BM = BC/2 = 2(cm)
Chu vi hình thoi ABEM là P = 4BM = 8 (cm)
d) Hình thoi AEBM là hình vuông khi góc ∠AMB = 900
⇒ AM ⊥ BC
Mặt khác: AM là trung tuyến của tam giác vuông ABC
Suy ra: Δ ABC vuông cân tại A
Điều kiện: Δ ABC vuông cân tại A
a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)
Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.
Mà DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)
Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.
b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.
c) Chu vi tứ giác AEBM là 4BM = 8 (cm)
d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.
b: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của ME
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi
a: Xét tứ giác AEMC có
ME//AC
ME=AC
Do đó: AEMC là hình bình hành
Mình vẽ hình hơi xâu, bạn thông cảm nhé!
a) Xét từ giác ABMC có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)
+ DA = DM (gt)
+ DB = DM(gt)
suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật
Các câu còn lại bạn đầu có thể giải theo cách trên nhé!
( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)
a) Ta có MB = MC, DB = DA
⇒ MD là đường trung bình của ΔABC
⇒ MD // AC
Mà AC ⊥ AB
⇒ MD ⊥ AB.
Mà D là trung điểm ME
⇒ AB là đường trung trực của ME
⇒ E đối xứng với M qua AB.
b) + MD là đường trung bình của ΔABC
⇒ AC = 2MD.
E đối xứng với M qua D
⇒ D là trung điểm EM
⇒ EM = 2.MD
⇒ AC = EM.
Lại có AC // EM
⇒ Tứ giác AEMC là hình bình hành.
+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.
Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.
c) Ta có: BC = 4cm ⇒ BM = 2cm
Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm
d)- Cách 1:
Hình thoi AEBM là hình vuông ⇔ AB = EM ⇔ AB = AC
Vậy nếu ABC vuông có thêm điều kiện AB = AC (tức tam giác ABC vuông cân tại A) thì AEBM là hình vuông.
- Cách 2:
Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM
⇔ ΔABC có trung tuyến AM là đường cao
⇔ ΔABC cân tại A.
Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.
bài này mình chưa học nhưng nó tương tự như bài này dưới đây mình đã học
Xét tam giác ABC:
Ta có: EB = EA, FA = FC (gt)
Nên EF // BC, EF = 1/2 BC.
Xét tam giác BDC có: HB = HD, GD = GC (gt)
Nên HG // BC, HG = 1/2 BC.
Do đó EF //HG, EF = HG.
Tương tự EH // FG, EH = FG
Vậy EFGH là hình bình hành.
a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC
b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC
c) EFGH là hình vuông ⇔ AD ⊥ BC và AD = BC
a: Xét ΔBAC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình của ΔBAC
Suy ra: MD//AC
hay ME\(\perp\)AB
mà ME cắt AB tại trung điểm của ME
nên E và M đối xứng nhau qua AB
b: Xét tứ giác AEMC có
AC//ME
AC=ME
Do đó: AEMC là hình bình hành
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
DO đó: ABDC là hình chữ nhật
b: Xét tứ giác AMBE có
N la trung điểm chung của AB và ME
MA=MB
Do đo: AMBE là hình thoi
c: Xét tứ giác AEMC có
AE//MC
AE=MC
DO đó: AEMC là hình bình hành