K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Lời giải:

Với $a,b,c>0$ ta có:

$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$

Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$

$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$

Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$

Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$

Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.

a: Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\left(b\ne0\right)\)

Theo đề, ta có: \(\dfrac{1}{3}< \dfrac{a}{b}< \dfrac{1}{2}\)

=>\(0,\left(3\right)< \dfrac{a}{b}< 0,5\)

=>\(\dfrac{a}{b}=0,4;\dfrac{a}{b}=0,42\)

=>\(\dfrac{a}{b}=\dfrac{2}{5};\dfrac{a}{b}=\dfrac{21}{25}\)

Vậy: Hai phân số cần tìm là \(\dfrac{2}{5};\dfrac{21}{25}\)

b: a/b<1

=>a<b

=>\(a\cdot c< b\cdot c\)

=>\(a\cdot c+ab< b\cdot c+ab\)

=>\(a\left(c+b\right)< b\left(a+c\right)\)

=>\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

AH
Akai Haruma
Giáo viên
5 tháng 5 2018

Lời giải:

Ta có:

\(\frac{a}{b+c}=\frac{2a}{2(b+c)}=\frac{2a}{(b+c)+(b+c)}< \frac{2a}{a+b+c}\) (do mỗi số nhỏ hơn tổng hai số kia thì \(a< b+c\))

Hoàn toàn tương tự:

\(\left\{\begin{matrix} \frac{b}{c+a}< \frac{2b}{a+b+c}\\ \frac{c}{a+b}< \frac{2c}{a+b+c}\end{matrix}\right.\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Ta có đpcm.

16 tháng 1

Ta có:

\(\dfrac{\overline{abc}}{\overline{bc}}=\dfrac{\overline{bca}}{\overline{ca}}=\dfrac{\overline{cab}}{\overline{ab}}\)

\(\Rightarrow\dfrac{100a+\overline{bc}}{\overline{bc}}=\dfrac{100b+\overline{ca}}{\overline{ca}}=\dfrac{100c+\overline{ab}}{\overline{ab}}\)

\(\Rightarrow\dfrac{100a}{\overline{bc}}+1=\dfrac{100b}{\overline{ca}}+1=\dfrac{100a}{\overline{ab}}+1\)

\(\Rightarrow\dfrac{100a}{\overline{bc}}=\dfrac{100b}{\overline{ca}}=\dfrac{100c}{\overline{ab}}\)

\(\Rightarrow\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}\)

Đặt: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=k\)

\(\Rightarrow a=k\overline{bc};b=k\overline{ca};c=k\overline{ab}\)

Ta có: \(\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\overline{bc}+k\overline{ca}+k\overline{ab}}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\left(\overline{bc}+\overline{ca}+\overline{ab}\right)}{\overline{bc}+\overline{ca}+\overline{ab}}=k\)

Nên: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{a+b+c}{10b+c+10c+a+10a+b}=\dfrac{a+b+c}{11\left(a+b+c\right)}=\dfrac{1}{11}\)

\(\Rightarrow k=\dfrac{1}{11}\) 

Giá trị của biểu thức P là:

\(P=\dfrac{a}{\overline{bc}}+\dfrac{b}{\overline{ca}}+\dfrac{c}{\overline{ab}}=k+k+k=\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}=\dfrac{3}{11}\)

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:
Vì $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$ nên:

$\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}$

Hay $\left(\frac{a}{b}\right)^3=\frac{a}{d}$

Ta có đpcm.

 

\(\left(\dfrac{a}{b}\right)^3=\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}=\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{d}=\dfrac{a}{d}\)

1.Tính giá trị các biểu thức sau a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\) b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\) 2.Tìm x biết \(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\) 3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13 b, Cho M = b -...
Đọc tiếp

1.Tính giá trị các biểu thức sau

a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\)

b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\)

2.Tìm x biết

\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\)

3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13

b, Cho M = b - \(\dfrac{2017}{2018}\left(-a+b\right)-\left(\dfrac{1}{2018}b+\dfrac{2015}{2017}c-a\right)-\left(\dfrac{2}{201}c+a\right)+c\)

Trong đó b, c ∈ Z và a là số nguyên âm. Chứng minh rằng M luôn có giá trị dương

4. a, Tìm tất cả các cặp số nguyên khác 0 sao cho tổng của chúng bằng tổng các nghịch đảo của chúng

b, Tìm số nguyên tố \(\overline{ab}\) (a > b > 0) sao cho \(\overline{ab}-\overline{ba}\) là số chính phương

5. Tìm các số tự nhiên a và b thỏa mãn \(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\)

1

Câu 2: 

\(\Leftrightarrow x\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow2x\left(\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow x\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{12}-\dfrac{1}{13}\right)=\dfrac{110}{39}\)

\(\Leftrightarrow x\cdot\dfrac{10}{39}=\dfrac{110}{39}\)

=>x=11

a) Ta có: \(\dfrac{3+x}{7+y}=\dfrac{3}{7}\)

\(\Leftrightarrow\dfrac{x+3}{3}=\dfrac{y+7}{7}\)

mà x+y=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+3}{3}=\dfrac{y+7}{7}=\dfrac{x+y+3+7}{3+7}=\dfrac{20+10}{10}=3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x+3}{10}=3\\\dfrac{y+7}{7}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=30\\y+7=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=14\end{matrix}\right.\)

Vậy: x=27; y=14

14 tháng 5 2021

ko toán chứ là cái gì