Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với $a,b,c>0$ ta có:
$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$
Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$
$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$
Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$
Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$
Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.
a: Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\left(b\ne0\right)\)
Theo đề, ta có: \(\dfrac{1}{3}< \dfrac{a}{b}< \dfrac{1}{2}\)
=>\(0,\left(3\right)< \dfrac{a}{b}< 0,5\)
=>\(\dfrac{a}{b}=0,4;\dfrac{a}{b}=0,42\)
=>\(\dfrac{a}{b}=\dfrac{2}{5};\dfrac{a}{b}=\dfrac{21}{25}\)
Vậy: Hai phân số cần tìm là \(\dfrac{2}{5};\dfrac{21}{25}\)
b: a/b<1
=>a<b
=>\(a\cdot c< b\cdot c\)
=>\(a\cdot c+ab< b\cdot c+ab\)
=>\(a\left(c+b\right)< b\left(a+c\right)\)
=>\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
Lời giải:
Ta có:
\(\frac{a}{b+c}=\frac{2a}{2(b+c)}=\frac{2a}{(b+c)+(b+c)}< \frac{2a}{a+b+c}\) (do mỗi số nhỏ hơn tổng hai số kia thì \(a< b+c\))
Hoàn toàn tương tự:
\(\left\{\begin{matrix} \frac{b}{c+a}< \frac{2b}{a+b+c}\\ \frac{c}{a+b}< \frac{2c}{a+b+c}\end{matrix}\right.\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Ta có đpcm.
Ta có:
\(\dfrac{\overline{abc}}{\overline{bc}}=\dfrac{\overline{bca}}{\overline{ca}}=\dfrac{\overline{cab}}{\overline{ab}}\)
\(\Rightarrow\dfrac{100a+\overline{bc}}{\overline{bc}}=\dfrac{100b+\overline{ca}}{\overline{ca}}=\dfrac{100c+\overline{ab}}{\overline{ab}}\)
\(\Rightarrow\dfrac{100a}{\overline{bc}}+1=\dfrac{100b}{\overline{ca}}+1=\dfrac{100a}{\overline{ab}}+1\)
\(\Rightarrow\dfrac{100a}{\overline{bc}}=\dfrac{100b}{\overline{ca}}=\dfrac{100c}{\overline{ab}}\)
\(\Rightarrow\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}\)
Đặt: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=k\)
\(\Rightarrow a=k\overline{bc};b=k\overline{ca};c=k\overline{ab}\)
Ta có: \(\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\overline{bc}+k\overline{ca}+k\overline{ab}}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\left(\overline{bc}+\overline{ca}+\overline{ab}\right)}{\overline{bc}+\overline{ca}+\overline{ab}}=k\)
Nên: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{a+b+c}{10b+c+10c+a+10a+b}=\dfrac{a+b+c}{11\left(a+b+c\right)}=\dfrac{1}{11}\)
\(\Rightarrow k=\dfrac{1}{11}\)
Giá trị của biểu thức P là:
\(P=\dfrac{a}{\overline{bc}}+\dfrac{b}{\overline{ca}}+\dfrac{c}{\overline{ab}}=k+k+k=\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}=\dfrac{3}{11}\)
Lời giải:
Vì $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}$ nên:
$\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}$
Hay $\left(\frac{a}{b}\right)^3=\frac{a}{d}$
Ta có đpcm.
\(\left(\dfrac{a}{b}\right)^3=\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{a}{b}=\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{c}{d}=\dfrac{a}{d}\)
Câu 2:
\(\Leftrightarrow x\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow x\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{12}-\dfrac{1}{13}\right)=\dfrac{110}{39}\)
\(\Leftrightarrow x\cdot\dfrac{10}{39}=\dfrac{110}{39}\)
=>x=11
a) Ta có: \(\dfrac{3+x}{7+y}=\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{x+3}{3}=\dfrac{y+7}{7}\)
mà x+y=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+3}{3}=\dfrac{y+7}{7}=\dfrac{x+y+3+7}{3+7}=\dfrac{20+10}{10}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x+3}{10}=3\\\dfrac{y+7}{7}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=30\\y+7=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=14\end{matrix}\right.\)
Vậy: x=27; y=14