Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5)
để \(\frac{5x-3}{x+1}\)là số nguyên
\(5x-3⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5\left(x+1\right)⋮x+1\)
\(5x-3-\left(5x-5\right)⋮x+1\)
\(-2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy \(x\in\left\{0;-2;1;-3\right\}\)
1, ta thấy :x^2>=0 =>3x^2>=0 =>3x^2+1>=1 =>A>=1
dau "=' xay ra khi va chi khi : x^2=0=>x=0
vậy GTNN của A =1 khi và chỉ khi x=0
2, Ta thấy Ix-1I>=0 =>3Ix-1I>=0 =>3Ix-1I-3<=3 =>B<=3
Dấu "= xảy ra khi ra chỉ khi :Ix-1I=0 =>x=1
Vậy GTLN của B=3 khi và chỉ khi x=1
3, Ta thấy (x-1)^2 >=0
=>3-(x-1)^2<=3
=>D<=3
Dau "=" xảy ra khi và chỉ khi (x-1)^2=0 =>x=1
vay GTLN của D =3 khi và chỉ khi x=1
còn C thì lâu mk k làm mấy cái dạng này nên cũng quên :))) so bj sai
1. A = 6x^3 - 3x^2 + 2.|x| + 4 với x = -23
Thay x = -23 vào biểu thức trên, ta có:
A = 6.(-23)^3 - 3.(-23)^2 + 2.|-23| + 4
A = -74539
2. B = 2.|x| - 3.|y| với x = 12; y = -3
Thay x = 12; y = -3 vào biểu thức trên, ta có:
B = 2.|12| - 3.|-3|
B = 15
3. |2 + 3x| = |4x - 3|
ta có: 2 + 3x = \(\hept{\begin{cases}4x-3\Leftrightarrow4x-3\ge0\Leftrightarrow x\ge\frac{3}{4}\\-\left(4x-3\right)\Leftrightarrow4x-3< 0\Leftrightarrow x< \frac{3}{4}\end{cases}}\)
Nếu x >= 3/4, ta có phương trình:
2 + 3x = 4x - 3
<=> 3x - 4x = -3 - 2
<=> -x = 5
<=> x = 5 (TM)
Nếu x < 3/4, ta có phương trình:
2 + 3x = -(4x - 3)
<=> 2 + 3x = -4x + 3
<=> 3x + 4x = 3 - 2
<=> 7x = 1
<=> x = 1/7 (TM)
Vậy: tập nghiệm của phương trình là: S = {5; 1/7}
\(A=\left|3x-4\right|-1\)
có :
\(\left|3x-4\right|\ge0\)
\(\Rightarrow\left|3x-4\right|-1\ge0+1\)
\(\Rightarrow\left|3x-4\right|-1\ge-1\)
dấu "=" xảy ra khi |3x - 4| = 0
=> 3x - 4 = 0
=> 3x = 4
=> x = 4/3
1,
Ta có: \(|3x-4|\ge0\forall x\)
\(\Rightarrow|3x-4|-1\ge0-1\)
\(\Rightarrow A\ge-1\)
\(\Rightarrow GTNN\)của A=-1
\(\Leftrightarrow|3x-4|=0\)
\(\Leftrightarrow3x-4=0\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)thì GTNN của A=-1
2,
Ta có: \(|x+10|\ge0\forall x\)
\(\Leftrightarrow|x+10|-2\ge0-2\)
\(\Leftrightarrow B\ge-2\)
\(\Leftrightarrow GTNN\)của B=-2
GTNN của B=-2
\(\Leftrightarrow|x+10|=0\)
\(\Leftrightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
Vậy x=-10 thì GTNN của B=-2
Bài 1:
A = 3(x + 1)2 + 5
Ta có: (x + 1)2 \(\ge\) 0 Với mọi x
\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 3(x + 1)2 + 5 \(\ge\) 5 với mọi x
Hay A \(\ge\) 5
Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1
Vậy...
B = 2|x + y| + 3x2 - 10
Ta có: 2|x + y| \(\ge\) 0 với mọi x, y
3x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y
Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0
\(\Rightarrow\) x = y = 0
Vậy ...
C = 12(x - y)2 + x2 - 6
Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y
x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = y = 0
Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất
Bài 2:
Phần A ko rõ đầu bài!
B = 3 - (x + 1)2 - 3(x + 2y)2
Ta có: -(x + 1)2 \(\le\) 0 với mọi x
-3(x + 2y)2 \(\le\) 0 với mọi x, y
\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)2 \(\le\) 3 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0
\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)
Vậy ...
C = -12 - 3|x + 1| - 2(y - 1)2
Ta có: -3|x + 1| \(\le\) 0 với mọi x
-2(y - 1)2 \(\le\) 0 với mọi y
\(\Rightarrow\) -12 - 3|x + 1| - 2(y - 1)2 \(\le\) -12 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0
\(\Rightarrow\) x = -1; y = 1
Vậy ...
Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa
F = \(\dfrac{-5}{3}\) - 2x2
Ta có: -2x2 \(\le\) 0 với mọi x
\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy ...
Chúc bn học tốt!
Bài làm
Gía trị của x là : \(\frac{1}{2}-\left(\frac{2}{3}x-\frac{1}{3}\right)=\frac{2}{3}\Leftrightarrow\frac{2}{3}x-\frac{1}{3}=-\frac{1}{6}\Leftrightarrow x=\frac{1}{4}\)
Ta có
\(\frac{1}{2}-\left(\frac{2}{3}x-\frac{1}{3}\right)=\frac{2}{3}\)
\(\frac{2}{3}x-\frac{1}{3}=\frac{1}{2}-\frac{2}{3}=-\frac{1}{6}\)
\(\frac{2}{3}x=-\frac{1}{6}+\frac{1}{3}\)
\(\frac{2}{3}x=\frac{1}{6}\)
\(x=\frac{1}{6}\div\frac{2}{3}=\frac{1}{6}.\frac{3}{2}\)
\(x=\frac{1}{4}\)
Vậy \(x=\frac{1}{4}\)