\((\sqrt{x}-\frac{9}{\sqrt{x}}):(\frac{\sqrt{x}+3}{\sqrt{x}}-\frac{9\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

a) \(B=\left(\sqrt{x}-\frac{9}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}}-\frac{9\sqrt{x}+9}{x+3\sqrt{x}}\right)\)

\(B=\frac{x-9}{\sqrt{x}}:\left(\frac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}\left(\sqrt{x}+3\right)}-\frac{9\sqrt{x}+9}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(B=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}}\cdot\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+6\sqrt{x}+9-9\sqrt{x}-9}\)

\(B=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)^2}{x-3\sqrt{x}}\)

\(B=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)^2}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(B=\frac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}}\)

b) \(2B=\sqrt{x}+31\)

\(\Leftrightarrow\frac{2\left(\sqrt{x}+3\right)^2}{\sqrt{x}}=\sqrt{x}+31\)

\(\Leftrightarrow2\left(x+6\sqrt{x}+9\right)=\sqrt{x}\left(\sqrt{x}+31\right)\)

\(\Leftrightarrow2x+12\sqrt{x}+18=x+31\sqrt{x}\)

\(\Leftrightarrow x-19\sqrt{x}+18=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-18\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}-18=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=324\end{matrix}\right.\)( thỏa )

Vậy....

c) \(M=B-\frac{5}{\sqrt{x}}\)

\(M=\frac{\left(\sqrt{x}+3\right)^2-5}{\sqrt{x}}\)

\(M=\frac{x+6\sqrt{x}+9-5}{\sqrt{x}}\)

\(M=\frac{x+6\sqrt{x}+4}{\sqrt{x}}\)

\(M=\sqrt{x}+6+\frac{4}{\sqrt{x}}\)

Đặt \(\frac{1}{\sqrt{x}}=a\)

Áp dụng bất đẳng thức Cô-si :

\(M=\frac{1}{a}+6+4a\ge2\sqrt{\frac{4a}{a}}+6=10\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{a}=4a\Leftrightarrow a=\frac{1}{2}\Leftrightarrow\frac{1}{\sqrt{x}}=\frac{1}{2}\Leftrightarrow x=4\)( thỏa )

Vậy....

5 tháng 8 2019
https://i.imgur.com/p5KHAHO.jpg
12 tháng 10 2018

các bạn giúp đi,mk kick cho

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

7 tháng 3 2020

1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\)\(\sqrt{x}-3\rightarrow\sqrt{x-3}\)

Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)

a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)

\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)

b) Để \(M=\frac{3}{4}\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)

\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)

\(\Leftrightarrow\sqrt{x}-1=0\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)(tm)

Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)

c) Khi x = 4

\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)

\(\Leftrightarrow M=\frac{2+2}{2+3}\)

\(\Leftrightarrow M=\frac{4}{5}\)

Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)

7 tháng 3 2020

Cho mik sửa ĐKXĐ: \(x\ne9\)nhé !

25 tháng 11 2018

có ai giúp mình giải bài này không please