![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
vì đường thẳng cắt Ox;Oy => k -3 khác 0 => k khác 3
+ x =0 => y =k+2 A(0;k+2)
+ y =0 => x =\(\frac{k+2}{3-k}\) B(\(\frac{k+2}{3-k}\);0)
Diện tích AOB = 1/2 . OA.OB = 1/2 ./\(\frac{k+2}{3-k}.\left(k+2\right)\)/ = 2
\(\left(k+2\right)^2=4\)/3 -k/
+ với k > 3 => k2 +4k +4 =4 k -12 => k2 = -16 loại
+ k<3 => k2 +4k +4 = 12 - 4k => k2 +8k+16 =24=>(k+4)2 =24 => k =-4 +\(2\sqrt{6}\) loại ; k =-4 -\(2\sqrt{6}\)( TM)
Vậy k =-4 -\(2\sqrt{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề sai. Giả sử tam giác là tam giác đều thì ta có:
\(tan\left(30\right)+tan\left(30\right)=\frac{2\sqrt{3}}{3}>\frac{\sqrt{3}}{3}=tan\left(30\right)\)
Nếu nó đều thì bất đẳng thức bị sai là sao dùng bất đẳng thức đó để chứng minh nó đều được.
Sửa đề:
\(\hept{\begin{cases}tan\frac{A}{2}+tan\frac{B}{2}\le2tan\frac{C}{2}\left(1\right)\\cot\frac{A}{2}+cot\frac{B}{2}\le2cot\frac{C}{2}\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{1}{tan\frac{A}{2}}+\frac{1}{tan\frac{B}{2}}\le\frac{2}{tan\frac{C}{2}}\le\frac{4}{tan\frac{A}{2}+tan\frac{B}{2}}\)
\(\Leftrightarrow\left(tan\frac{A}{2}+tan\frac{B}{2}\right)^2\le4tan\frac{A}{2}.tan\frac{B}{2}\)
\(\Leftrightarrow\left(tan\frac{A}{2}-tan\frac{B}{2}\right)^2\le0\)
Dấu = xảy ra khi \(tan\frac{A}{2}=tan\frac{B}{2}\)
\(\Rightarrow A=B\)
Thế lại hệ ban đầu ta được
\(\hept{\begin{cases}2tan\frac{A}{2}\le2tan\frac{C}{2}\\2cot\frac{A}{2}\le2cot\frac{C}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}tan\frac{A}{2}\le tan\frac{C}{2}\\tan\frac{A}{2}\ge tan\frac{C}{2}\end{cases}}\)
Dấu = xảy ra khi \(A=C\)
Vậy ta có được \(A=B=C\) nên tam giác ABC là tam giác đều.