K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

\(\left(n+34\right)\left(n+1\right)\left(-245\right)=\left(n^2+n+34n+34\right) \left(-245\right)=-245n^2-8575n+8330\)

9 tháng 1 2018

A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

3A= 1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n+1).3

3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + n.(n+1).(n+2-n+1)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n.(n+1).(n+2) - (n-1).n.(n+1)

3A = n.(n+1).(n+2) 

A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Ta có : 3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 


14 tháng 9 2018

\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

\(4B=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)

\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right).n.\left(n+1\right)\)

\(4B=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)

\(B=\frac{\left(n-1\right).n.\left(n+1\right)\left(n+2\right)}{4}\)

Tham khảo nhé~

14 tháng 9 2018

Ta có: \(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

\(\Leftrightarrow4B=4.\left[1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\right]\)

\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)

\(\Leftrightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right)n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)

\(\Leftrightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-2\right).\)\(\left(n-1\right).n.\left(n+1\right)\)

\(\Leftrightarrow4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)

\(\Leftrightarrow B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)

Vậy \(B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)

15 tháng 2 2018

Ta có \(\left(x+2\right)^{n+1}=\left(x+2\right)^{n+11}\)

\(\Rightarrow\left(x+2\right)^{n+1}-\left(x+2\right)^{n+11}=0\)

\(\Rightarrow\left(x+2\right)^{n+1}.\left[1-\left(x+2\right)^{10}\right]=0\)

\(\Rightarrow\left(x+2\right)^{n+1}=0\)hoặc \(1-\left(x+2\right)^{10}=0\)

Với \(\left(x+2\right)^{n+1}=0\Rightarrow x+2=0\Rightarrow x=-2\)

Với \(1-\left(x+2\right)^{10}=0\Rightarrow\left(x+2\right)^{10}=1\Rightarrow\orbr{\begin{cases}x+2=1\\x+2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}}\)

9 tháng 8 2017

\(A=\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{2n-1-\left(n-14\right)}{n+8}=\frac{n+13}{n+8}\)

Để A thuộc Z thì \(n+13⋮n+8\Rightarrow n+13-\left(n+8\right)⋮n+8\)

\(\Rightarrow5⋮n+8\Rightarrow n+8\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)

\(\Leftrightarrow n\in\left\{-7;-3;-9;-13\right\}\)

OK

17 tháng 8 2017

hi lily

17 tháng 11 2018

n=120

17 tháng 11 2018

Đặt A = 1 +3 +5 +...+(2n-1)

Số số hạng của A là : [(2n-1)-1]:2 +1 = n 

Tổng A = [(2n-1)+1]xn:2=n2

=> n2=169

=>n2=132

=>n=13

27 tháng 2 2020

a) Ta có: \(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{10}-1\right)=\frac{-1}{2}.\frac{-2}{3}...\frac{-9}{10}=\frac{-\left(1.2.3...9\right)}{2.3.4...10}=-\frac{1}{10}\)

b) Ta có : \(B=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)....\left(\frac{1}{100}-1\right)=\frac{-3}{4}.\frac{-8}{9}....\frac{-99}{100}=-\frac{3.8....99}{\left(2.3...10\right)\left(2.3...10\right)}\)

\(=-\frac{1.3.2.4...9.11}{\left(2.3....10\right)\left(2.3...10\right)}=\frac{\left(1.2.3...10\right).\left(3.4..10.11\right)}{\left(2.3...10\right).\left(2.3.4...10\right)}=\frac{11}{2}=5,5\)

c) Ta có : \(C=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{n+1}\right)=\frac{1}{2}.\frac{2}{3}...\frac{n}{n+1}=\frac{1.2...n}{2.3...\left(n+1\right)}=\frac{1}{n+1}\)

31 tháng 1 2017

S=1.2+2.3+3.4+.............+n(n+1) 
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

ai tk mk mk tk lại cho 3 tk

31 tháng 1 2017

3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + n(n + 1).3

= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + n(n + 1)[(n + 2) - (n - 1)]

= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + n(n + 1)(n + 2) - (n - 1)n(n + 1)

= (1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + ..... + [ (n - 1)n(n + 1) - (n - 1)n(n + 1) ] + n(n + 1)(n + 2)

= n(n + 1)(n + 2)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)