Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
Ta có:
2225 = (29)25 = 51225
3150 = (36)25 = 72925
Vì 51225 < 72925 => 2225 < 3150
b) \(\left||3x+1|+3\right|=2\)
Mà \(\left|3x+1\right|\ge0\)nên \(\left|3x+1\right|+3\ge3\)
Vậy biểu thức trong dấu GTTĐ luôn dương
\(\Rightarrow\left|3x+1\right|+3=2\)
\(\Rightarrow\left|3x+1\right|=-1\)(vô lí)
Vậy pt vô nghiệm
a) \(\left|2x-1\right|-4=5\)
\(\Leftrightarrow\left|2x-1\right|=5+4\)
\(\Leftrightarrow\left|2x-1\right|=9\)
\(\Leftrightarrow2x-1=\pm9\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=9\\2x-1=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
c) \(\left|3x-2\right|=4-2x\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=4-2x\\-\left(3x-2\right)=4-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=-2\end{cases}}\)
d) \(\left|1-3x\right|=1+2x\)
\(\Leftrightarrow\orbr{\begin{cases}1-3x=1+2x\\-\left(1-3x\right)=1+2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)
\(A=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\right)\)
\(>1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+4\times\frac{1}{8}+4\times\frac{1}{12}+4\times\frac{1}{16}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(=1+2\times\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
\(>1+2\times\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=1+2\times1\)
\(=1+2=3=B\)
\(\Rightarrow A>B\)
Học tốt
\(A< B\)