\(x^2-2\left(m-1\right)x+m-3=0\).

a) Ch...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

a= 1; b'= -(m-1); c= m-3

a) Xét: Δ'=b'2-ac=[-(m-1)]2-(m-3)  = m2-2m+1-m+3=m2-3m+4=m2-2.\(\dfrac{3}{2}\).m+\(\dfrac{9}{4}\)\(\dfrac{7}{4}\)=(m-\(\dfrac{3}{2}\))2+\(\dfrac{7}{4}\)

Vì: (m-\(\dfrac{3}{2}\))2≥0, nên Δ'=(m-\(\dfrac{3}{2}\))2+\(\dfrac{7}{4}\)>0 Nên Pt có 2 nghiệm phân biệt.

b) Theo Viet ta có:

S=...= 2(m-1)  và P=..= m-3

Theo bài ra PT có 2 nghiệm đối nhau nên: 

\(\left\{{}\begin{matrix}P=m-3< 0\\S=2\left(m-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m=1\end{matrix}\right.\Leftrightarrow m=1\)

Vậy với m=1 thì PT có 2 nghiệm đối nhau

 

a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)

Vậy PT luôn có 2 nghiệm phân biệt.

b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi

\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)

21 tháng 5 2021
19 tháng 3 2022

a= 1; b= - 2(m-1) ; b'= -m+1; c=2m-5

a) 

Xét: Δ'=b'- ac = (-m+1)2-(2m-5)= m2-2m+1-2m+5=m2-4m+6=m2-4m+4+2=(m-2)2+2

Vì (m-2)2≥0 nên Δ'=(m-2)2+2>0. Suy ra PT luôn có nghiệm.

b) Theo hệ thức Viet ta có:

S=x1+x2=\(\dfrac{-b}{a}\)=2(m-1)

Theo đề ra tổng 2 nghiệm bằng 6 nên: 

2(m-1)=6 ⇔m=4

Vậy với m=4 thì PT có tổng 2 nghiệm bằng 6.

 

16 tháng 1 2016

1>\(\Delta=b^2-4ac\)

\(=m^2-4\left(2m-1\right)\left(-m+1\right)\)

khai triển ra là được \(\left(3m-2\right)^2\ge0\)

=>phương trình luôn có ít nhất là một nghiệm

2>để phương trình có 2 nghiệm phân biệt thì \(\left(3m-2\right)^2>0\)=>\(3m-2>0\Rightarrow m>\frac{2}{3}\)

còn cần tìm x thì theo công thức mà tìm

3> thế vô mà tìm

 

 

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-16m+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

b: Theo đề, ta có: 2(m-1)=6

=>m-1=3

=>m=4