\(\bigtriangleup{ABC}\) cân tại A có BC = 2a , M là trung điểm của BC . Lấy D
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

a, Ta có : \(\widehat{DMC}\) = \(\widehat{B} + \widehat{BDM}\)

Xét \(\bigtriangleup{DMB}\)\(\bigtriangleup{MCE}\) , có :

\(\widehat{DME} = \widehat{B}\)

\(\widehat{BDM} = \widehat{EMC}\)

\(\Rightarrow\) \(\bigtriangleup{DMB}\) ~ \(\bigtriangleup{MCE}\) (g.g)

\(\Rightarrow\) \(\dfrac{DB}{BM} = \dfrac{MC}{EC} <=> BD.CE = BM . MC = a^2\) (đpcm)

b, Vì \(\bigtriangleup{DBM} \) \(\sim \) \(\bigtriangleup{MCE} <=> \dfrac{DM}{ME} = \dfrac{BD}{CM}\)

hay \(\dfrac{DM}{ME}= \dfrac{BD}{BM} \)

\(\Rightarrow\) \(\bigtriangleup{DME} \sim \bigtriangleup{DMB}\)

\(\Rightarrow\) \(\widehat{MDE} = \widehat{BDM} \)

\(\Rightarrow\) DM là tia phân giác của \(\widehat{BDE}\) (đpcm)

21 tháng 8 2019

Tự vẽ hình

Ta có : \(CA . CE = CD . CB\)

\(\Rightarrow\) \(\dfrac{CA}{CD} = \dfrac{CB}{CE}\)

Xét \(\bigtriangleup{CAD} \)\(\bigtriangleup{CBE}\) , có :

\(\widehat{BCE}\) : chung

\(\widehat{CDA} = \widehat{CBE} = 90 ^0\)

\(\Rightarrow\) \(\bigtriangleup{CAD}\) ~ \(\bigtriangleup{CBE}\) ( g.g)

\(\Rightarrow\) \(\dfrac{CA}{CB} = \dfrac{CD}{ CE}\)

\(\Rightarrow\) \(CA. CE = CB . CD\) (đpcm)

21 tháng 8 2019

b, Xét \(\bigtriangleup{AQC}\) vuông tại Q , có : \(QE \perp AD\)
Áp dụng hệ thức \(b^2 = a . b'\) , có :

\(\Leftrightarrow\) \(CQ^2 = CA . CE \) (1)

Xét \(\bigtriangleup{CPB}\) vuông tại P , có : \(PD \perp BC\)

Áp dụng hệ thức \(b^2= a . b'\)

\(\Leftrightarrow\) \(CP^2 = CB . CD \) (2)

\(CA . CE = CB . CD \) (cmt) (3)

Từ (1),(2) và (3) \(\Rightarrow\) \(CQ^2 = CP^2\)

\(\Rightarrow\) \(CQ = CP \) (đpcm)

24 tháng 8 2019

a, Xét \(\bigtriangleup{EAB} \)\(\bigtriangleup{CDE}\) , ta có :

\(\widehat{A} = \widehat{D} = 90^0\)

\(\widehat{AEB} = \widehat{ECD} \)

\(\Rightarrow\) \(\bigtriangleup{EAB} \sim \bigtriangleup{CDE}\) (g.g)

\(\Rightarrow\) \(\dfrac{AB}{DE} = \dfrac{EA}{CD} \)

\(\Rightarrow\) \( \dfrac{AB}{a} = \dfrac{a}{CD} \)

\(\Rightarrow\) \(AB.CD = a^2 \) (đpcm)

b, Xét \(\bigtriangleup{EAB}\)\(\bigtriangleup{CEB}\) , ta có :

\(\widehat{A} = \widehat{CEB} = 90^0\)

Từ a, ta có : \(\dfrac{EB}{CE} = \dfrac{AB}{DE} = \dfrac{AB}{AE} \)

\(\Rightarrow\) \(\dfrac{EB}{AB} = \dfrac{ CE}{AE}\)

\(\Rightarrow\) \(\bigtriangleup{EAB} \) ~ \(\bigtriangleup{CEB} \)

26 tháng 1 2018

mình hướng dẫn nhé

b) ta có: \(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn 

\(\Rightarrow\widehat{ADB}=90^0\)

\(\Rightarrow AD\perp BC\)  là đường cao đồng thời là đường phân giác

\(\Rightarrow\widehat{BAD}=\widehat{CAD}=\frac{1}{2}\widehat{BAC}\)

ta lại có \(\widehat{DAE}=\widehat{EBD}\) cùng chắn cung \(DE\) nhỏ

\(\Rightarrow\widehat{CBE}=\frac{1}{2}\widehat{BAC}\)

26 tháng 1 2018

Ai làm được câu a chỉ mình với @@

27 tháng 8 2019

Ta có : \(\widehat{C} = 180^0 - (120^0+35^0) = 25^0 \)

Vẽ AH \(\perp BC\) . Vì các góc B và C nhọn nên H nằm giữa B và C

AH = \(AB . sinB\) = AC . sinC

\(\Rightarrow\) AC = \(\dfrac{AB.sinB}{sinC} = \dfrac{12,25.sin35^0}{sin25^0}\) \(\approx 16,63 (dm )\)

BC = BH + CH = AB . cos35\(^0\) + AC = . cos25\(^0\)

\(\approx \) 10,035 +15,069

\(\approx \) 25,10 (dm)