K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-2}{\sqrt{5}}=\dfrac{5-2\sqrt{5}}{5}\)

b: Để \(A< \dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow2\sqrt{x}-2-\sqrt{x}-1< 0\)

\(\Leftrightarrow x< 9\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

17 tháng 6 2023

\(P=A.B=\dfrac{\sqrt{x}}{\sqrt{x}+1}.\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Ta có : \(\left|P\right|-P=0\) \(\Leftrightarrow\left|P\right|=P\Leftrightarrow\left|\dfrac{\sqrt{x}}{\sqrt{x}-2}\right|=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(+TH_1:x\ge0\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\) (luôn đúng)

\(+TH_2:x< 0\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}=0\)

\(\Leftrightarrow-2.\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)=0\)

\(\Leftrightarrow x=0\)

6 tháng 6 2019

\(b,\)\(\sqrt{\frac{2}{x^2}}\)

Căn thức xác định \(\Leftrightarrow\frac{2}{x^2}\)thỏa mãn đkxđ

\(\Rightarrow x^2\ne0\)

\(\Rightarrow x\ne0\)

6 tháng 6 2019

a) \(\sqrt{\frac{-5}{x^2+6}}\)

Để biểu thức có nghĩa thì \(x^2+6< 0\)

Mà \(x^2\ge0\Rightarrow x^2+6\ge6\)(mâu thuẫn)

Vậy biểu thức này không xác định

2 tháng 9 2019

AI GIẢI HỘ MÌNH K CHO Ạ!!!

13 tháng 9 2019

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

15 tháng 9 2023

a) \(x\ge0\)

b) \(x\le0\)

c) \(x\le4\)

d) \(\sqrt{x^2+1}>0\forall x\) => \(x\in R\)

15 tháng 9 2023

a)đẻ \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì

\(\dfrac{x}{3}\ge0\\ \Leftrightarrow x\ge0\)

b) để \(\sqrt{-5x}\) có nghĩa thì 

\(-5x\ge0\\ \Leftrightarrow x\le0\)

c) để \(\sqrt{4-x}\) có nghĩa thì 

\(4-x\ge0\\ \Leftrightarrow x\le4\)

d) để \(\sqrt{1+x^2}\) có nghĩa thì

\(1+x^2\ge0\forall x\in R\)

a, \(x\ge\frac{3}{2}\)

b, với mọi x

c, x khác 0

d,với mọi x

e, x khác 0