Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos a=\dfrac{-12}{13}\)
\(\sin b=\dfrac{4}{5}\)
\(\sin\left(a+b\right)=\sin a\cos b+\sin b\cos a\)
\(=\dfrac{5}{13}\cdot\dfrac{3}{5}+\dfrac{4}{5}\cdot\dfrac{-12}{13}=\dfrac{-45}{65}=\dfrac{-9}{13}\)
\(A=\frac{2tan15^0}{1-tan^215^0}=tan\left(2.15^0\right)=tan30^0=\frac{\sqrt{3}}{3}\)
\(B=\frac{1}{2}.2sin\frac{\pi}{16}.cos\frac{\pi}{16}.cos\frac{\pi}{8}=\frac{1}{2}.sin\left(2.\frac{\pi}{16}\right)cos\frac{\pi}{8}\)
\(=\frac{1}{4}.2sin\frac{\pi}{8}cos\frac{\pi}{8}=\frac{1}{4}sin\left(2.\frac{\pi}{8}\right)=\frac{1}{4}sin\frac{\pi}{4}=\frac{\sqrt{2}}{8}\)
\(P=sin^2x+3cos^2x=1-cos^2x+3cos^2x=1+2cos^2x=1+2.\left(\dfrac{1}{4}\right)^2=\dfrac{9}{8}\)
\(sinx+cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
\(=\sqrt{2}cos\left(\frac{\pi}{2}-\left(x+\frac{\pi}{4}\right)\right)=\sqrt{2}cos\left(\frac{\pi}{4}-x\right)=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)
\(sinx-cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx-\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)
\(=-\sqrt{2}sin\left(\frac{\pi}{4}-x\right)=-\sqrt{2}cos\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x\)
\(=sin^2x-cos^2x+sin2x=sin2x-cos2x\)
\(=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)\)
Bạn ghi ko đúng đề
\(sin\left(x-\frac{\pi}{2}\right)+sin\frac{13\pi}{2}=sin\left(x+\frac{\pi}{2}\right)\)
\(\Leftrightarrow-cosx+1=cosx\)
\(\Leftrightarrow2cosx=1\Rightarrow cosx=\frac{1}{2}\)
\(A=\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)
\(=\frac{3}{2}+\frac{1}{2}cos2x+cos2x.cos\frac{4\pi}{3}\)
\(=\frac{3}{2}+\frac{1}{2}cos2x-\frac{1}{2}cos2x=\frac{3}{2}\)
\(B=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}-\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)
\(=\frac{3}{2}-\frac{1}{2}cos2x-cos2x.cos\frac{4\pi}{3}\)
\(=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x=\frac{3}{2}\)
sin π 12 . sin 7 π 12 = 1 2 cos π 12 - 7 π 12 - cos π 12 + 7 π 12 = 1 2 . cos - π 2 - cos 2 π 3 = 1 2 . 0 - - 1 2 = 1 4 ⇒ sin π 4 . sin π 12 . sin 7 π 12 = 2 2 . 1 4 = 2 8