Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=sin^2x+3cos^2x=1-cos^2x+3cos^2x=1+2cos^2x=1+2.\left(\dfrac{1}{4}\right)^2=\dfrac{9}{8}\)
\(\cos a=\dfrac{-12}{13}\)
\(\sin b=\dfrac{4}{5}\)
\(\sin\left(a+b\right)=\sin a\cos b+\sin b\cos a\)
\(=\dfrac{5}{13}\cdot\dfrac{3}{5}+\dfrac{4}{5}\cdot\dfrac{-12}{13}=\dfrac{-45}{65}=\dfrac{-9}{13}\)
\(A=\frac{2tan15^0}{1-tan^215^0}=tan\left(2.15^0\right)=tan30^0=\frac{\sqrt{3}}{3}\)
\(B=\frac{1}{2}.2sin\frac{\pi}{16}.cos\frac{\pi}{16}.cos\frac{\pi}{8}=\frac{1}{2}.sin\left(2.\frac{\pi}{16}\right)cos\frac{\pi}{8}\)
\(=\frac{1}{4}.2sin\frac{\pi}{8}cos\frac{\pi}{8}=\frac{1}{4}sin\left(2.\frac{\pi}{8}\right)=\frac{1}{4}sin\frac{\pi}{4}=\frac{\sqrt{2}}{8}\)
cos - π 4 . cos 3 π 4 + sin - π 4 . sin 3 π 4 = cos - π 4 - 3 π 4 = cos - π = cosπ = - 1
Chắc là \(0< a< \dfrac{\pi}{2}\)?
\(0< a< \dfrac{\pi}{2}\Rightarrow sina;cosa>0\)
\(\left\{{}\begin{matrix}sina=\sqrt{3}cosa\\sin^2a+cos^2a=1\end{matrix}\right.\) \(\Rightarrow\left(\sqrt{3}cosa\right)^2+cos^2a=1\)
\(\Rightarrow4cos^2a=1\Rightarrow cosa=\dfrac{1}{2}\)
\(\Rightarrow sina=\sqrt{3}cosa=\dfrac{\sqrt{3}}{2}\)
`A= sinx. sin(60^o - x) . sin (60^o +x)`
`= sinx . 1/2(cos2x - cos120^o)`
`=sinx . 1/2 cos 2x + 1/4 sinx`
\(A=4sinx.sin\left(60^0-x\right).sin\left(60^0+x\right)\)
\(=2.sinx.\left(cos2x-cos120^0\right)\)
\(=2sinx\left(cos2x+\dfrac{1}{2}\right)\)
\(=2sinx.cos2x+sinx\)
sin 6 π 7 + sin 8 π 7 = 2 . sin 6 π 7 + 8 π 7 2 = 2 sinπ . cos - π 7 = 2 . 0 . cos - π 7 = 0