Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{8x+12}{x^2+4}=\frac{4x^2+16-4x^2+8x-4}{x^2+4}\)
\(=4-\frac{\left(2x-2\right)^2}{x^2+4}\le4\)
Vậy GTLN là 4
Áp dụng BĐT trị tuyệt đối:
\(M=\left|x-2019\right|+\left|2021-x\right|+2020\left|x-2020\right|\)
\(M\ge\left|x-2019+2021-x\right|+2020\left|x-2020\right|=2+2020\left|x-2020\right|\ge2\)
\(\Rightarrow M_{min}=2\) khi \(\left\{{}\begin{matrix}\left(x-2019\right)\left(2021-x\right)\ge0\\\left|x-2020\right|=0\end{matrix}\right.\) \(\Rightarrow x=2020\)
/x-3/>=0\(\Rightarrow\)-/x-3/<=0 maxP=12 khi x-3=0 \(\Rightarrow\)x=3
\(P=-\left|x-3\right|+12\)
Vì \(-\left|x-3\right|\le0\Leftrightarrow-\left|x-3\right|+12\le12\)
Vậy GTLN của P là 12 tại \(-\left|x-3\right|=0\Leftrightarrow x=0\)
Bài 1:
a) Vì giá trị của biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\) nên \(\frac{3x-2}{4}\) \(\ge\) \(\frac{3x+3}{6}\)
TH1: \(\frac{3x-2}{4}\) = \(\frac{3x+3}{6}\)
=> (3x-2)6 = (3x+3)4
18x -12= 12x+12
=> x = 4
TH2: \(\frac{3x-2}{4}\) > \(\frac{3x+3}{6}\)
=> (3x-2)6 > (3x+3)4
18x-12> 12x+12
=> x \(\ge\) 5
b) Vì ( x+1)2 \(\ge\) 0; (x-1)2 \(\ge\) 0 mà (x+1) luôn lớn hơn (x-1) với mọi x nên không có giá trị của x thỏa mãn (x+1)2 nhỏ hơn (x-1)2
c) Phần c bạn cũng xét tương tự như phần a
TH1: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}=\frac{x^2}{7}-\frac{2x-3}{5}\)
TH2: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}<\frac{x^2}{7}-\frac{2x-3}{5}\)
Biểu thức:
\(A=\frac{2020-x}{6-x}=\frac{2014+6-x}{6-x}=\frac{2014}{6-x}+1\)
Để A đạt giá trị lớn nhất:
thì \(\frac{2014}{6-x}\)đạt giá trị lớn nhất
<=> \(\frac{2014}{6-x}>0\) và \(6-x\)đạt giá trị bé nhất
=> \(6-x=1\Leftrightarrow x=5\)
Lúc đó A đạt giá trị lớn nhất là: \(maxA=\frac{2014}{6-5}+1=2015\)
Ta có : Q(x) = -(x+1)(x+2019) + 2020
= - (x2+2019x+x+2019) + 2020
= -x2 - 2020x - 2019 +2020
= -x2 - 2020x + 1
= - (x2+2020x + 1020100) + 1020101
= - (x+1010)2+1020101
Vì (x+1010)2 \(\ge\) 0 \(\forall x\) nên - (x+1010)2 \(\le0\forall x\)
=> - (x+1010)2+1020101 \(\le\)1020101 với mọi x
=> Q(x) \(\le\)1020101 với mọi x
Ta thấy Q(x) = 1020101 khi (x+1010)2 = 0 => x+1010 = 0 => x = -1010
Vậy Q(x) đạt GTLN là 1020101 khi x = -1010