Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)a)=>x2+y2+2xy-4(x2-y2-2xy)
=>x2+y2+2xy-4.x2+4y2+8xy
=>-3.x2+5y2+10xy
a ) \(P=\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(P=\dfrac{x^3\left(x-1\right)-\left(x-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)
\(P=\dfrac{\left(x^3-1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}\)
Với : x # 1 thì : ( x - 1)2 luôn lớn hơn hoặc bằng 0
x2 + 2 > 0 với mọi x
Suy ra : \(P=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}>0\)( với x # 1)
b) Tương tự
Tử = x4 + (x2 + x + 1)
x4 \(\ge\) 0 với mọi x ; x2 + x + 1 = x2 + 2.x.\(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{3}{4}\) = (x + \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) > 0
=> Tử > 0 với mọi x
+) Mẫu = (x4 - x3 + x2) + (x2 - x + 1) = x2.(x2 - x + 1) + (x2 - x + 1) = (x2 + 1). (x2 - x + 1) > 0 với mọi x
Do x2 + 1 > 0 ; x2 - x + 1 = (x - \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) > 0
Vậy A > 0 với mọi x
Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)
M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)
Đặt \(\frac{1}{x^2+1}=y\)
Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)
Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10
<=> x2 = 9 <=> \(x=\pm3\)
Vậy MinM = 19/20 khi x = 3 hoặc x = -3
M = x2 + 4x + 2 = ( x2 + 4x + 4 ) - 2 = ( x + 2 )2 - 2 ≥ -2 ∀ x
Dấu "=" xảy ra <=> x = -2 . Vậy MinM = -2
N = 4x2 - 8x + 4 = ( 2x - 2 )2 ≥ 0 ∀ x
Dấu "=" xảy ra <=> x = 1 . Vậy MinN = 0
E = x( x - 6 ) - 6 = x2 - 6x - 6 = ( x2 - 6x + 9 ) - 15 = ( x - 3 )2 - 15 ≥ -15 ∀ x
Dấu "=" xảy ra <=> x = 3 . Vậy MinE = -15
Dễ thấy 5=4+1=x+1
Thay vào C,ta có:
\(C=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-1=x-1=4-1=3\)