Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức B đạt giá trị nhỏ nhất khi:B=\(\frac{1}{\sqrt{x}+2016}\) voi \(\sqrt{x}\) =0 ta co B=\(\frac{1}{0+2016}\) =\(\frac{1}{2016}\)
để \(B=\frac{1}{\sqrt{x}+5}\) thì \(\sqrt{x}+5\) nhỏ nhất
xét mẫu:\(\sqrt{x}+5\)
ta có:\(\sqrt{x}\ge0\)
nên : \(\sqrt{x}+5\ge5\)
vậy B=\(\frac{1}{\sqrt{x}+5}\) lớn nhất bằng \(\frac{1}{2}=0,2\)
Mình chả biết có đúng ko nữa nhưng bạn tham khảo nhé mình ko giỏi dạng toán này cho lắm
Ta có :
\(P=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=\frac{4-x}{4-x}+\frac{10}{4-x}=1+\frac{10}{4-x}\)
Để P đạt GTLN thì \(\frac{10}{4-x}\) phải đạt GTLN hay \(4-x>0\) và đạt GTNN
\(\Rightarrow\)\(4-x=1\)
\(\Rightarrow\)\(x=3\)
Suy ra : \(P=\frac{14-x}{4-x}=\frac{14-3}{4-3}=\frac{11}{1}=11\)
Vậy \(P_{max}=11\) khi \(x=3\)
Đúng thì thôi, sai thì đừng k sai nhé nhắn tin bảo sai là mình biết mình sẽ sửa :)
P=\(\frac{14-x}{4-x}\)=\(\frac{4-x+10}{4-x}\)=1+\(\frac{10}{4-x}\)
Để P có GTLN thì \(\frac{10}{4-x}\)phải có GTLN
suy ra 4-x phải là số dương nhỏ nhất (1)
Vì x nguyên suy ra 4-x nguyên (2)
từ (1) và (2) suy ra 4-x=1 suy ra GTLN của P là 1+10=11 <=> x=3
vậy..................
Để biểu thức trên có giá trị lớn nhất thì: \(\frac{1}{\sqrt{x}+5}=1\Rightarrow\sqrt{x}=-4\) ( vô lí ). Vậy \(\sqrt{x}+5\ge5\)
\(\Rightarrow\) Để biểu thức trên có giá trị lớn nhất thì: \(\frac{1}{\sqrt{x}+5}=\frac{1}{5}\Rightarrow\sqrt{x}+5=5\Rightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Tick mik nha