K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

để f(x)>0 với mọi x thì:

\(\left\{{}\begin{matrix}\Delta'< 0\\a>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-2\left(m^2+2\right)< 0\\m^2+2>0\left(lđ\right)\end{matrix}\right.\)\(\Leftrightarrow m^2+4m>0\Leftrightarrow\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\)

7 tháng 3 2021

Để \(f\left(x\right)>0\Rightarrow\Delta'>0\Rightarrow\left(m-2\right)^2-2\left(m^2+2\right)>0\Leftrightarrow m^2-4m+4-2m^2-4>\Leftrightarrow-m^2-4m>0\Leftrightarrow m^2+4m< 0\Leftrightarrow m\left(m+4\right)< 0\Leftrightarrow-4< m< 0\)

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

10 tháng 3 2023

\(f\left(x\right)>0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4\left(m^2-2m+1\right)-4\left(-m^2+4m-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow4m^2-8m+4+4m^2-12m-16< 0\)

\(\Leftrightarrow8m^2-20m-12< 0\)

\(KL:m\in\left(-1;3\right)\)

23 tháng 3 2022

f(x)=−2x2+(m+2)x+m−4≤0,∀x

⇔{a<0Δ<0

⇔{−2<0   ;  m2+12m−28<0

⇔−14<m<2

NV
23 tháng 3 2022

\(f\left(x\right)\le0;\forall x\in R\)

\(\Leftrightarrow\Delta=\left(m+2\right)^2+8\left(m-4\right)\le0\)

\(\Leftrightarrow m^2+12m-28\le0\)

\(\Rightarrow-14\le m\le2\)

13 tháng 3 2019

1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:

\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow a\ge\frac{1}{2}\)

2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)

3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)

4, Nếu m=0 => f(x)=-2x-1<0 (loại)

Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)

\(\Rightarrow m< -1\)

a: Để bất phương trình có vô số nghiệm thì \(\left\{{}\begin{matrix}\left(2m-2\right)^2-4m< =0\\1>0\end{matrix}\right.\Leftrightarrow4m^2-8m+4-4m< =0\)

=>\(m^2-3m+1< =0\)

=>\(\dfrac{3-\sqrt{5}}{2}< =m< =\dfrac{3+\sqrt{5}}{2}\)

b: Để f(x)=0 có hai nghiệm thì \(m^2-3m+1>=0\)

=>\(\left[{}\begin{matrix}m>=\dfrac{3+\sqrt{5}}{2}\\m< =\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)

Theo đề, ta có: x1>1; x2>1

=>x1+x2>2

=>2(m-1)>2

=>m>2

13 tháng 4 2020

\(f(x)=x^2+2mx+m+6\)

Để $f(x) >0 \forall x \in \mathbb{R}$ thì \(\left\{{}\begin{matrix}1>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in R\\m^2-\left(m+6\right)< 0\end{matrix}\right.\)\(\Leftrightarrow m^2-m-6< 0\Leftrightarrow-2< m< 3\)

KL: ....................