Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu diễn điện áp bằng véc tơ quay ta có:
200√2 u 100√2 60° M N 60° -100√2
Sau thời gian 1/300s, véc tơ quay đã quay một góc là: \(100\pi.\frac{1}{300}=\frac{\pi}{3}\)(rad)
Véc tơ quay sẽ quay từ M đến N, khi đó hình chiếu của N lên trục u cho ta giá trị điện áp cần tìm.
Đáp án: \(u=-100\sqrt{2}V\)
Bài toán này điện áp u phải là \(u=200\sqrt{2}\cos\left(100\pi t-\frac{\pi}{2}\right)\)
Biểu diễn điện áp bằng véc tơ quay ta có:
u 60° M 160 80 N 30°
Sau thời gian 0,015s, véc tơ quay đã quay một góc là: \(100\pi.0,015=1,5\pi\)(rad)
Véc tơ quay sẽ quay từ M đến N, khi đó hình chiếu của N lên trục u cho ta giá trị điện áp cần tìm.
Đáp án: \(u=160\cos30^0=80\sqrt{3}V\)
Do mạch chỉ có tụ C thì u vuông pha với i, nên ta có:
\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
\(\Rightarrow\left(\frac{60}{U_0}\right)^2+\left(\frac{\sqrt{3}}{I_0}\right)^2=1\)
\(\left(\frac{60\sqrt{2}}{U_0}\right)^2+\left(\frac{\sqrt{2}}{I_0}\right)^2=1\)
\(\Rightarrow\begin{cases}U_0=120V\\I_0=2A\end{cases}\)
T=0.1
t2=t1+0.025=t1+T/4-->\(x_1^2+x_2^2=A^2\)-->x22=12
ma tai t1 dong giam va t2=t1+T/4 --->X2=-2\(\sqrt{3}\)
u 220√2 -220√2 110√2 60° sáng sáng
Biểu diễn u bằng véc tơ quay như hình vẽ.
Đèn sáng ứng với véc tơ quét các góc như trên hình.
\(\varphi_{sáng}=4.60=240^0\)
\(\varphi_{tối}=360-240=120^0\)
\(\Rightarrow\frac{t_{sáng}}{t_{tối}}=\frac{\varphi_{sáng}}{\varphi_{tối}}=\frac{240}{120}=\frac{2}{1}\)
Mạch chỉ có cuôn cảm thì cường độ dòng điện và điện áp tức thời vuông pha tức là
\(\frac{i^2}{I_0^2}+\frac{u^2}{U_0^2} = 1. \)
với \(i = 2A, u = 100\sqrt{2V}\) => \(\frac{4}{I_0^2}+\frac{(100\sqrt{2})^2}{U_0^2} =1\)
mà \(U_0 = I_0 Z_L = 50I_0\)(\(Z_L = L \omega = 50 \Omega.\)) Thay vào phương trình trên ta được
\(\frac{4}{I_0^2}+\frac{20000}{2500.I_0^2} = 1\)=> \(\frac{12}{I_0^2} = 1=> I_0 = 2\sqrt{3}A.\)
Mạch chỉ có cuộn cảm thuần => u sớm pha hơn i là \(\pi/2\). Tức là \(\varphi_u - \varphi_i = \frac{\pi}{2} => \varphi_i = \frac{\pi}{3}-\frac{\pi}{2} = -\frac{\pi}{6}.\)
\(i = 2\sqrt{3} \cos (100\pi t -\frac{\pi}{6})A.\)
Chọn đáp án A bạn nhé.
\(Z_C=\frac{1}{\omega C}=200\Omega\)
\(I_0=\frac{U_0}{Z_C}=\frac{100}{200}=0,5\)
Mạch điện chỉ có tụ C nên dòng điện sớm pha \(\frac{\pi}{2}\) so với u
\(\Rightarrow\varphi_i=\varphi_u+\frac{\pi}{2}=0\)
Vậy \(i=0,5\cos\left(100\pi t\right)\left(A\right)\)
\(Z_L=140\Omega\)
\(Z_L=100\Omega\)
R thay đổi để P mạch cực đại khi \(R+r=\left|Z_L-Z_C\right|\Leftrightarrow R+30=\left|140-100\right|\Leftrightarrow R=10\Omega\)
Bonus: \(P_{max}=\frac{U^2}{2\left(R+r\right)}=\frac{100^2}{2\left(10+30\right)}=125W\)
t1 u=100=UO/2 đang giảm t2=t1 + T/4 -->u2 =-100\(\sqrt{3}\) o A -A -A 3 A/2 T/12 T/6 + 2