\(\frac{1-x}{2+x}-\frac{x-1}{x-2}+\frac{4-x^{^3}}{4-x^2}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 giờ trước (16:09)

b: \(A=\frac{1-x}{2+x}-\frac{x-1}{x-2}+\frac{4-x^3}{4-x^2}\)

\(=\frac{-\left(x-1\right)}{x+2}-\frac{x-1}{x-2}+\frac{x^3-4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{-\left(x-1\right)\left(x-2\right)-\left(x-1\right)\left(x+2\right)+x^3-4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{-\left(x^2-3x+2\right)-\left(x^2+x-2\right)+x^3-4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{-x^2+3x-2-x^2-x+2+x^3-4}{\left(x-2\right)\left(x+2\right)}=\frac{x^3-2x^2+2x-4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2\left(x-2\right)+2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x^2+2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2+2}{x+2}\)

d:

Sửa đề: Tìm x∈Z lớn nhất để A>0

A>0

=>\(\frac{x^2+2}{x+2}>0\)

=>x+2>0

=>x>-2

mà x là số nguyên lớn nhất có thể

nên x=-3

e: Để A là số nguyên thì \(x^2+2\) ⋮x+2

=>\(x^2-4+6\) ⋮x+2

=>6⋮x+2

=>x+2∈{1;-1;2;-2;3;-3;6;-6}

=>x∈{-1;-3;0;-4;1;-5;4;-8}


20 giờ trước (9:49)

Bài giải

Cho:
[
A=\frac{1-x}{2+x}-\frac{x-1}{x-2}+\frac{4-x^3}{4-x^2},\quad (x\neq \pm2).
]

(b) Rút gọn A

Ta có:
[
\frac{1-x}{2+x}=-\frac{x-1}{x+2}.
]

Do đó:
[
-\frac{x-1}{x+2}-\frac{x-1}{x-2}=(x-1)\Big(-\frac{1}{x+2}-\frac{1}{x-2}\Big)
=-\frac{2x(x-1)}{x^2-4}.
]

Mặt khác:
[
\frac{4-x^3}{4-x^2}=\frac{x^3-4}{x^2-4}=x+\frac{4(x-1)}{x^2-4}.
]

Suy ra:
[
A=-\frac{2x(x-1)}{x^2-4}+x+\frac{4(x-1)}{x^2-4}
=x-\frac{2(x-1)(x-2)}{(x-2)(x+2)}.
]

[
\Rightarrow A=x-\frac{2(x-1)}{x+2}=\frac{x^2+2}{x+2}.
]


(d) Tìm (x\in \mathbb{Z}) nhỏ nhất để (A>0)

Vì (x^2+2>0) nên dấu của (A) phụ thuộc vào (x+2).
Điều kiện: (A>0 \iff x+2>0 \iff x>-2).
Số nguyên nhỏ nhất thoả mãn: (x=-1).


(e) Tìm (x\in\mathbb{Z}) để (A\in\mathbb{Z})

Ta có:
[
A=\frac{x^2+2}{x+2}=x-2+\frac{6}{x+2}.
]

Để (A\in\mathbb{Z}), cần (\dfrac{6}{x+2}\in \mathbb{Z}).
Vậy (x+2) phải là ước của 6: (\pm1,\pm2,\pm3,\pm6).

[
\Rightarrow x\in{-1,0,1,4,-3,-4,-5,-8}.
]


👉 Kết quả:

  • (b) (A=\dfrac{x^2+2}{x+2},; x\neq \pm2).
  • (d) (x=-1).
  • (e) (x\in{-8,-5,-4,-3,-1,0,1,4}).


13 tháng 1 2019

\(a,M=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)

\(=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\right]\)

\(=1:\left[\frac{\left(x^2+2\right)+\left(x+1\right)\left(x-1\right)+\left(-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\left[\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\frac{x}{x^2+x+1}=\frac{x^2+x+1}{x}\)

13 tháng 1 2019

Giải các câu khác giúp mình với 

a: \(B=\left(\dfrac{x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{10}{5\left(x+2\right)}+\dfrac{1}{x-2}\right):\dfrac{x^2-4+6-x^2}{x-2}\)

\(=\left(\dfrac{1}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x+2}+\dfrac{1}{x-2}\right):\dfrac{2}{x-2}\)

\(=\dfrac{1-2x+4+x+2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{2}=\dfrac{-x+7}{2\left(x+2\right)}\)

b: Ta có: |x|=1/2

=>x=1/2 hoặc x=-1/2

Thay x=1/2 vào B, ta được:

\(B=\dfrac{-\dfrac{1}{2}+7}{2\left(\dfrac{1}{2}+2\right)}=\dfrac{13}{10}\)

Thay x=-1/2 vào B, ta được:

\(B=\dfrac{\dfrac{1}{2}+7}{2\left(-\dfrac{1}{2}+2\right)}=\dfrac{5}{2}\)

4 tháng 1 2017

a) xác định khi x khác +-1

b)

\(A=\left(\frac{\left(2x+1\right).\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}\)

\(A=\left(\frac{\left(2x^2+3x+1\right)+8-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}=\frac{x^2+5x+8}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{x+1}\)

\(A=\frac{x^2+5x+8}{\left(x+1\right)^2}=1+\frac{3\left(x+1\right)+4}{\left(x+1\right)^2}\)

c)

GTNN \(B=\frac{3y+4}{y^2}\ge-\frac{9}{16}\)

GTNN \(A=\frac{7}{16}\)

12 tháng 11 2018

a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)

\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)

d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)

Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)

21 tháng 9 2019

a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)

\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)

d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)

\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng nhé

e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)

\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)

11 tháng 3 2020

ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)

\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)

Đề sai à ??

BĐT Bunhiacopxky em chưa học cô ạ

Cô cong cách nào không ạ

AH
Akai Haruma
Giáo viên
1 tháng 6 2020

Nguyễn Thị Nguyệt Ánh:

Vậy thì bạn có thể chứng minh $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$ thông qua BĐT Cô-si:

Áp dụng BĐT Cô-si:

$x+y+z\geq 3\sqrt[3]{xyz}$

$xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}$

Nhân theo vế:

$(x+y+z)(xy+yz+xz)\geq 9xyz$

$\Rightarrow \frac{xy+yz+xz}{xyz}\geq \frac{9}{x+y+z}$
hay $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$