Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là phân số thì n+3<>0
hay n<>-3
b: Để A là số nguyên thì \(2n+6-2⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{-2;-4;-1;-5\right\}\)
a: Để A là số nguyên thì \(4n^2-9-10⋮2n^2+3\)
\(\Leftrightarrow2n^2+3\in\left\{5;10\right\}\)
hay \(n\in\left\{1;-1\right\}\)
b: \(A=\dfrac{4n^2-19}{2n^2+3}=\dfrac{4n^2+6-25}{2n^2+3}=2-\dfrac{25}{2n^2+3}< -\dfrac{25}{3}+2=-\dfrac{19}{3}\forall n\)
Dấu '=' xảy ra khi n=0
a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)
mà n nguyên
nên \(2n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-1;2;-3\right\}\)
b: B nguyên thì 3n+5-5 chia hết cho 3n+5
=>\(3n+5\inƯ\left(-5\right)\)
mà n nguyên
nên \(3n+5\in\left\{-1;5\right\}\)
=>n=-2 hoặc n=0
c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3
=>\(2n-3\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;1\right\}\)
a) A là phân số <=>2n-4\(\ne0\)
<=>2n\(\ne\)4
<=>n\(\ne\)2
b)Với n\(\ne2\)
A=\(A=\dfrac{-4n+2}{2n-4}=\dfrac{-4n+8-6}{2n-4}=\dfrac{-2\left(2n-4\right)-6}{2n-4}=-2+\dfrac{-6}{2n-4}\)
A có giá trị nguyên <=>-6 chia hết cho 2n-4
<=>2n-4 là ước của -6
<=>2n-4\(\varepsilon\){-6;-3;-2;-1;1;2;3;6}
2n-4 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
2n | -2 | 1 | 2 | 3 | 5 | 6 | 7 | 10 |
n | -1 | 0.5 | 1 | 1.5 | 2.5 | 3 | 3.5 | 5 |
TM | KTM | TM | KTM | KTM | TM | KTM | TM |
a, Vì mẫu số không thể bằng 0 nên để A là phân số thì n - 2 khác 0
=> n khác 2
Vậy n thuộc {...; -1; 0; 1; 3;...}
b, Để A là số nguyên thì 3 phải chia hết cho n - 2
=> n - 2 thuộc {-1; 1; -3; 3}
=> n thuộc {1; 3; -1; 5}
Vậy...
ta co de 3/n-2 la so nguyen thi =) 3 chia het cho n-2 =) n-2=(+1;+3)
=) n = 1;-1;3;5
=) de A la p/s thi n khac 1;-1;3;5
\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)
Để A nguyên => 3-n = Ước của 5
\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)
ĐKXĐ: \(n\ne-\dfrac{1}{2}\)
Để A là số nguyên thì \(3⋮2n+1\)
=>\(2n+1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{0;-2;2;-4\right\}\)
=>\(n\in\left\{0;-1;1;-2\right\}\)