\(\sqrt{\frac{a}{b}}\) với a<0 và b<0 ở dạng thương của hai căn thức.Áp d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

Với \(\begin{cases}a< 0\\b< 0\end{cases}\) thì \(\sqrt{\frac{a}{b}}=\sqrt{-a}:\sqrt{-b}\)

Áp dụng \(\sqrt{\frac{-49}{-81}}=\sqrt{-\left(-49\right)}:\sqrt{-\left(-81\right)}=\sqrt{49}:\sqrt{81}=7:9=\frac{7}{9}\)

22 tháng 10 2018

\(\sqrt{\dfrac{a}{b}}\)=\(\dfrac{\sqrt{a}}{\sqrt{b}}\) với a,b<0

Ta có : \(\sqrt{\dfrac{-49}{-81}}\)=\(\sqrt{\dfrac{49}{81}}\)=\(\dfrac{7}{9}\)

15 tháng 8 2016

Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)

b) Để A= B

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)

\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)

Vậy x>3 thì A=B

 

 

 

15 tháng 8 2016

a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)

ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)

13 tháng 8 2016

\(\sqrt{ab}=\sqrt{-a}.\sqrt{-b}\) (vì a<0 , b<0)

Áp dụng : \(\sqrt{\left(-25\right).\left(-64\right)}=\sqrt{-\left(-25\right)}.\sqrt{-\left(-64\right)}=\sqrt{25}.\sqrt{64}=5.8=40\)

23 tháng 4 2017

Do a và b âm nên -a và -b dương

Khi đó , ta có: \(\sqrt{a.b}=\sqrt{\left(-a\right)\left(-b\right)}=\sqrt{-a}.\sqrt{-b}\)

Áp dụng , ta có: \(\sqrt{\left(-25\right)\left(-64\right)}=\sqrt{25}.\sqrt{64}=5.8=40\)

17 tháng 10 2019
https://i.imgur.com/zmqmZ1u.jpg
3 tháng 8 2018

a)Ta có:  \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)

\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)

Vì \(\sqrt{20}< \sqrt{50}\)

Nên \(2\sqrt{5}< 5\sqrt{2}\)

b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)

\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)

Vì \(\sqrt{117}< \sqrt{176}\)

Nên \(3\sqrt{13}< 4\sqrt{11}\)

c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)

\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)

Vì \(\sqrt{\frac{63}{16}}>1\)

\(\sqrt{\frac{4}{5}}< 1\)

Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)

Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)

a: \(=\sqrt{3a}:\sqrt{b}\)

b: \(=\sqrt{a}:\sqrt{xy}\)