\(\dfrac{5}{x+yx+1}+\dfrac{5}{y+yz+1}\dfrac{5}{z+zx+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

\(A=\dfrac{5}{x+xy+xyz}+\dfrac{5x}{xy+xyz+x}+\dfrac{5xy}{xyz+x.xyz+xy}\)

Vì \(xyz=1\)

\(\Rightarrow A=\dfrac{5}{x+xy+xyz}+\dfrac{5x}{xy+xyz+x}+\dfrac{5xy}{xyz+x+xy}\)

\(\Rightarrow A=5.\dfrac{x+xy+xyz}{x+xy+xyz}=5\)

27 tháng 10 2017

nhanh lên chiều nay tui nộp rùi

30 tháng 10 2017

= \(\dfrac{\sqrt{xy}-1+\sqrt{yz}-3+\sqrt{zx}-5}{3+9+6}\) = \(\dfrac{11-\left(1+3+5\right)}{18}\)=\(\dfrac{1}{9}\) haha

20 tháng 11 2017

Ta có: \(\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{zx+z+1}\)

\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{xy^2+xy+x}+\dfrac{xyz}{x^2yz+xyz+xy}\)

\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{xy+x+1}+\dfrac{1}{xy+x+1}\)( vì \(xyz=1\))

\(=\dfrac{x+xy+1}{xy+x+1}=1\)

Chúc bạn học tốt!

9 tháng 8 2017

Câu hỏi của jgfhjudfhuvfghdf |Học trực tuyến

15 tháng 4 2017

\(\dfrac{1}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{xyz+yz+y}\)

\(=\dfrac{xyz}{xy+x+xyz}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)

\(=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)

\(=\dfrac{yz}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)

\(=\dfrac{yz+y+1}{yz+y+1}=1\left(đpcm\right)\)

Vậy...

15 tháng 4 2017

êu , sao \(\dfrac{1}{xy+x+1}\)+... lại bằng \(\dfrac{xyz}{xy+z+zxy}\)+... vậy ?

21 tháng 10 2017

a) Ta có:

\(x+y+z=49\Rightarrow12x+12y+12z=588\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{588}{49}=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.3:2\\y=12.4:3\\z=12.5:4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

NV
29 tháng 11 2018

\(x-y+100=z\Rightarrow x-y-z=-100\)

\(\dfrac{x}{4}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{y}{15}=\dfrac{z}{9}\)

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

\(\Rightarrow x=20.25=500;y=15.25=375;z=9.25=225\)

b/ \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)

\(\Rightarrow\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{5z-25-4y-12-3x+3}{30-16-6}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=2\\\dfrac{y+3}{4}=2\\\dfrac{z-5}{6}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)

c/ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=a\Rightarrow\left\{{}\begin{matrix}x=2a\\y=3a\\z=5a\end{matrix}\right.\) \(\Rightarrow xyz=2a.3a.5a=30a^3=-30\Rightarrow a^3=-1\Rightarrow a=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=2a=-2\\y=3a=-3\\z=5a=-5\end{matrix}\right.\)

d/ \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\Rightarrow\dfrac{2x}{2,2}=\dfrac{y}{1,3}=\dfrac{z}{1,4}=\dfrac{2x-y}{2,2-1,3}=\dfrac{5,5}{0,9}=\dfrac{55}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1,1.55}{9}=\dfrac{121}{18}\\y=\dfrac{1,3.55}{9}=\dfrac{143}{18}\\z=\dfrac{1,4.55}{9}=\dfrac{77}{9}\end{matrix}\right.\) Nghi ngờ bạn chép đề câu này sai, số xấu quá

18 tháng 8 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Leftrightarrow\dfrac{yz+xz+xy}{xyz}=0\)

\(\Leftrightarrow xy+xz+yz=0\)

~ ~ ~

\(x^2+2yz\)

\(=x^2+yz-xy-xz\)

\(=\left(x-y\right)\left(x-z\right)\)

Tương tự, ta có: \(y^2+2xz=\left(y-x\right)\left(y-z\right)\)\(z^2+2xy=\left(z-x\right)\left(z-y\right)\)

\(A=\dfrac{yz}{\left(x-z\right)\left(x-y\right)}+\dfrac{xz}{\left(y-x\right)\left(y-z\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(A=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-z\right)\left(x-y\right)\left(y-z\right)}\)

\(=\dfrac{\left(x-z\right)\left(x-y\right)\left(y-z\right)}{\left(x-z\right)\left(x-y\right)\left(y-z\right)}\)

= 1

2 tháng 4 2017

\(A=\dfrac{x}{xy+x+1}+\dfrac{y}{y+1+yz}+\dfrac{z}{1+z+xz}\)

\(=\dfrac{x}{xy+x+xyz}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+z}\)

\(=\dfrac{x}{x\left(y+1+yz\right)}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+y}\)

\(=\dfrac{1}{y+1+yz}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+y}\)

\(=\dfrac{1+y+yz}{y+1+yz}=1.\)