Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
Toán lớp 6? -_-
\(P=\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\)
*Áp dụng bất đẳng thức Cauchy, ta có:
\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\ge\dfrac{9}{xy+yz+zx}\)
\(P\ge\dfrac{1}{x^2+y^2+z^2}+\dfrac{9}{xy+yz+xz}=\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+zx\right)}+\dfrac{7}{xy+yz+zx}\)
*Áp dụng bất đẳng thức Cauchy-Schwarz, ta có:
\(\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+zx\right)}\ge\dfrac{\left(1+2\right)^2}{\left(x+y+z\right)^2}\)
và \(\dfrac{7}{xy+yz+xz}\ge\dfrac{7}{\dfrac{1}{3}\left(x+y+z\right)}=21\)
\(\Rightarrow P\ge9+21=30\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
a, \(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}\)
ta có: \(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}=>\dfrac{3}{x}=\dfrac{5}{6}-\dfrac{y}{3}=\dfrac{5-2y}{6}\)
=>\(\dfrac{3}{x}=\dfrac{5-2y}{6}=>x.\left(5-2y\right)=3.6=18\)
=> x và 5-2y thuộc Ư của 18={1,-1,2,-2,3,-3,6,-6}
vì 5-2y là số lẻ=> 5-2y= +-1 hoặc 5-2y=+-3
xét bảng
5-2y | 1 | -1 | 3 | -3 |
y | 2 | 3 | 1 | 4 |
x | 18 | -18 | 6 | -6 |
vậy giá trị x,y cần tìm là: {x=18.y=2}
{x=-18.y=3}
{x=6, y=1}Ư
{x=-6,y=4}
Ta có: 1/3 + −2/5+ 1/6 + −1/5 ≤ x < −3/4+2/7+-1/4+3/5+5/7
⇒10-12+5-6/30≤ x< -105+40-35+84+100/140
⇒-3/30≤ x <84/140
⇒-0,1≤ x < 0,6
⇒x=0
Giải:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)
Ta có: \(xyz=60\)
\(\Rightarrow3k.4k.5k=60\)
\(\Rightarrow k^3.60=60\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Rightarrow x=3,y=4,z=5\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(3;4;5\right)\)
b, \(\dfrac{x-3}{4}=\dfrac{15}{20}\)
<=> \(\dfrac{x-3}{4}=\dfrac{3}{4}\)
=> x-3=3
<=> x=6
Vậy x=6
\(a,\dfrac{x}{15}=\dfrac{4}{y}=\dfrac{-2}{5}\)
* \(\dfrac{x}{15}=\dfrac{-2}{5}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{-6}{15}\)
\(\Rightarrow x=-6\)
*\(\dfrac{4}{y}=\dfrac{-2}{5}\)
\(\Rightarrow\dfrac{4}{y}=\dfrac{4}{-10}\)
\(\Rightarrow y=-10\)
Vậy x = - 6 ; y = - 10
\(b,\dfrac{x-3}{4}=\dfrac{15}{20}\)
=> ( x - 3 ) . 20 = 4. 15
=> 20x - 60 = 60
=> 20x = 60 + 60
=> 20x = 120
=> x = 120 : 20
=> x = 6
Vậy x = 6
\(c,\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{22}{-9}+\dfrac{-7}{15}< x\le\dfrac{-1}{3}+\dfrac{-1}{4}+\dfrac{-5}{12}\)
\(\Rightarrow\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{-22}{9}+\dfrac{-7}{15}< x\le\dfrac{-4}{12}+\dfrac{-3}{12}+\dfrac{-5}{12}\)
\(\Rightarrow\left(\dfrac{-5}{9}+\dfrac{-22}{9}\right)+\left(\dfrac{-8}{15}+\dfrac{-7}{15}\right)< x\le-1\)
\(\Rightarrow-3+\left(-1\right)< x\le-1\)
\(\Rightarrow-4< x\le-1\)
\(\Rightarrow x=-3;-2;-1\)
a: \(\Leftrightarrow x\cdot\dfrac{62}{7}=\dfrac{29}{9}\cdot\dfrac{56}{3}=\dfrac{1624}{27}\)
hay \(x=\dfrac{1624}{27}:\dfrac{62}{7}=\dfrac{5684}{837}\)
b: \(\Leftrightarrow\dfrac{1}{5}:x=\dfrac{12}{35}\)
nên \(x=\dfrac{1}{5}:\dfrac{12}{35}=\dfrac{1}{5}\cdot\dfrac{35}{12}=\dfrac{7}{12}\)
c: \(\Leftrightarrow\left|2x+\dfrac{1}{3}\right|=\dfrac{30-7}{42}=\dfrac{23}{42}\)
=>2x+1/3=23/42 hoặc 2x+1/3=-23/42
=>2x=3/14 hoặc 2x=-37/42
=>x=3/28 hoặc x=-37/84
a: \(\Leftrightarrow\dfrac{8}{5}+\dfrac{2}{5}\cdot x=\dfrac{16}{5}\)
=>2/5x=8/5
=>x=4
b: \(\Leftrightarrow\left(\dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{39}-\dfrac{1}{40}\right)\cdot120+\dfrac{1}{3}x=-4\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}+2=-4\)
=>1/3x=-6
=>x=-18
c: =>2|x-1/3|=0,24-4/5=-0,56<0