Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
solution:
ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )
\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)
\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)
tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)
cả 2 vế các BĐT đều dương,cộng vế với vế:
\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)
Áp dụng BĐT bunyakovsky ta có:
\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)
\(\Rightarrow S\ge x^2+y^2+z^2\)
đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)
dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1
*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):
\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)
\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)
(x+y+z)^2/3>=(x^2+y^2+z^2+2xy+2yz+2zx)/3>=3(xy+yz+zx)/3=xy+yz+zx(do x^2+y^2+z^2>=xy+yz+zx)(1)
(xy+yz)/2>=y√xz;(yz+zx)/2>=z√xy;(zx+xy)/2>=x√yz(BĐT Cô-si)
Cộng theo vế >>>xy+yz+zx>=y√xz+z√xy+x√yz(2)
Từ(1),(2) >>>đpcm
Đặt \(\hept{\begin{cases}\sqrt{x}=p\\\sqrt{y}=q\\\sqrt{z}=r\end{cases}}\). Khi đó \(\hept{\begin{cases}p+q+r=1\\p,q,r>0\end{cases}}\)
và ta cần chứng minh \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\)
Ta có: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}=\frac{2pq}{\sqrt{\left(1+1+2\right)\left(p^2+q^2+2r^2\right)}}\)
\(\le\frac{2pq}{p+q+2r}\le\frac{1}{2}\left(\frac{pq}{p+r}+\frac{pq}{q+r}\right)\)(Theo BĐT Cauchy-Schwarz và BĐT \(\frac{1}{u}+\frac{1}{v}\ge\frac{4}{u+v}\)) (1)
Hoàn toàn tương tự: \(\frac{qr}{\sqrt{q^2+r^2+2p^2}}\le\frac{1}{2}\left(\frac{qr}{q+p}+\frac{qr}{r+p}\right)\)(2); \(\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\left(\frac{rp}{r+q}+\frac{rp}{p+q}\right)\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\)\(\le\frac{1}{2}\left(\frac{r\left(p+q\right)}{p+q}+\frac{p\left(q+r\right)}{q+r}+\frac{q\left(r+p\right)}{r+p}\right)=\frac{1}{2}\left(p+q+r\right)=\frac{1}{2}\)(Do p + q + r = 1)
Đẳng thức xảy ra khi \(p=q=r=\frac{1}{3}\)hay \(x=y=z=\frac{1}{9}\)
Áp dụng BDT AM-GM ta có:\(VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)\)
\(\Rightarrow\frac{VT}{3}\ge\frac{x^2}{xy+xz+x}+\frac{y^2}{yz+yx+y}+\frac{z^2}{xz+zy+z}\)
\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+xy+z}\) (Cauchy-Schwarz)
Do \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)\(\Rightarrow\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)^2\)
\(\Rightarrow x+y+z\le x^2+y^2+z^2\).Suy ra
\(2\left(xy+yz+xz\right)+x+y+z\le2\left(xy+yz+xz\right)+x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra \(\frac{VT}{3}\le\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\Rightarrow VT\ge3\) (điều phải chứng minh)
Dấu "=" xảy ra khi x=y=z=1
\(BĐT\Leftrightarrow\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{xyz}\)\(\ge3+\sqrt{x^2.\frac{x+y+z}{xyz}+1}+\sqrt{y^2.\frac{x+y+z}{xyz}+1}\)
\(+\sqrt{z^2.\frac{x+y+z}{xyz}+1}\)
Ta có biến đổi sau:
\(VT=\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz}{xyz}\)\(=\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}+3\)
\(VP=\sqrt{\frac{x+y}{z}.\frac{y+z}{x}}+\sqrt{\frac{y+z}{x}.\frac{z+x}{y}}+\sqrt{\frac{z+x}{y}.\frac{x+y}{z}}\)
Nên bđt đã cho tương đương với:
\(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)\(\ge\sqrt{\frac{x+y}{z}.\frac{y+z}{x}}+\sqrt{\frac{y+z}{x}.\frac{z+x}{y}}+\sqrt{\frac{z+x}{y}.\frac{x+y}{z}}\)
Đúng theo bđt cơ bản \(a^2+b^2+c^2\ge ab+bc+ca\)
Áp dụng BĐT Cauchy cho 2 bộ số thực không âm:
\(\Rightarrow\left\{\begin{matrix}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{matrix}\right.\)
Cộng theo từng vế:
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)
\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)
\(\Rightarrow1\le x+y+z\)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\) ( 1 )
Ta có: \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Áp dụng bất đẳng thức cộng mẫu số:
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\) ( 2 )
Từ điều ( 1 ) và ( 2 )
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Vậy GTNN của \(A=\frac{1}{2}\)
Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
\(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow2x+2y+2z=2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\)
\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=\sqrt{y}\\\sqrt{y}=\sqrt{z}\\\sqrt{z}=\sqrt{x}\end{matrix}\right.\)
\(\Rightarrow x=y=z\)