Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=>
\(\frac{x-1}{2}\)= \(\frac{2y-4}{6}\)= \(\frac{3z-9}{12}\)= \(\frac{x-1-2y-4+3z-9}{2-6+12}\)=\(\frac{\left(-10\right)-6}{8}\)=\(\frac{-16}{8}\)= -2
-> \(\frac{x-1}{2}\)= - 2 => x = -3 (1)
-> \(\frac{y-2}{3}\)= - 2 => y = -7 (2)
-> \(\frac{z-3}{4}\)= - 2 => z = -5 (3)
Từ (1), (2) và (3) suy ra: x + y + z = (-3) + (-7) + (-5) = - 15
Ta có: \(\frac{x-1+1}{2+1}=\frac{y-2+2}{3+2}=\frac{z-3+3}{4+3}=\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x}{3}=\frac{2y}{10}=\frac{3z}{21}=\frac{-10}{14}=\frac{-5}{7}\)
\(\Rightarrow\frac{x}{3}=\frac{-5}{7}\Rightarrow x=\frac{-15}{7};\frac{y}{5}=\frac{-5}{7}\Rightarrow y=\frac{-25}{7};\frac{z}{7}=\frac{-5}{7}\Rightarrow z=-5\)
Áp dụng t/c vủa dãy tỉ số bằng nhau ta có \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1-2\left(y-2\right)+3\left(z-3\right)}{2-2.3+3.4}=\frac{\left(x-2y+3z\right)-1+4-9}{8}=\frac{14-6}{8}=1\)
=> x - 1 = 2; y - 2 = 3; z - 3 = 4
=> x = 3; y = 5; z = 7
Vậy...
Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x-2y+3z=14
=> \(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)và x-2y+3z=14
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)\(=\frac{x-2y+3z-14}{20}=\frac{14-14}{20}=0\)
Từ \(\frac{x-1}{2}=0=>x-1=0=>x=1\)
\(\frac{2y-4}{6}=0=>2y-4=0=>2y=4=>y=2\)
\(\frac{3z-9}{12}=0=>3z-9=0=>3z=9=>z=3\)
=>(x-1)/2=(-2y+4)/-6=(3z-9)/12
=(x-1-2y+4+3z-9)/(2-6+12)
=-16/8=-2
=> (x-1)/2=-2<=>x-1=-4<=>x=-3
=>(y-2)/3=-2<=>y-2=-6<=>y=-4
=>(z-3)/4=-2<=>z-3=-8<=>z=-5
Vậy x = -3 ; y = -4 ; z = -5