Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#) Giải
Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0)
=> z(x + y) = xy
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1
Vậy không tồn tại x, y, z thỏa đk bài toán
~ Hok tốt ~
kham khảo ở đây nha
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này
hc tốt ~:B~
Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\\z-x=c\end{cases}}\)
Vì \(\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\) nên \(a+b+c=0\Rightarrow a+b=-c\)
Ta có : \(P=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{\left(a+b\right)^2b^2+a^2\left(a+b\right)^2+a^2b^2}{a^2b^2\left(a+b\right)^2}}=\sqrt{\frac{a^4+b^4+a^2b^2+2ab^3+2ab^3+2a^2b^2}{a^2b^2\left(a+b\right)^2}}\)
\(=\sqrt{\frac{\left(a^2+b^2+ab\right)^2}{a^2b^2\left(a+b\right)^2}}=\frac{a^2+b^2+ab}{ab\left(a+b\right)}\) là một số hữu tỉ (đpcm)
Đặt \(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}}\)thì giả thiết trở thành ab=1.
tìm Min \(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\)
ta có: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{a^2+b^2-2}+a^2+b^2=\frac{1}{a^2+b^2-2}+a^2+b^2-2+2\)
Áp dụng bất đẳng thức AM-GM:\(\frac{1}{a^2+b^2-2}+a^2+b^2-2\ge2\)
do đó \(VT\ge4\)
Giải:
A = 1 ; B = 2 ; C = 3
x = 8 ; y = 5 ; z = 3
Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6
A ; B ; C có bội số chung nhỏ nhất là 6.